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Three-dimensional wake transition 
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It is now well-known that the wake transition regime for a circular cylinder involves 
two modes of small-scale three-dimensional instability (modes A and B), depending on 
the regime of Reynolds number (Re),  although almost no understanding of the physical 
origins of these instabilities, or indeed their effects on near-wake formation, have 
hitherto been made clear. We address these questions in this paper. In particular, it is 
found that the two different modes A and B scale on different physical features of the 
flow. Mode A has a larger spanwise wavelength of around 3-4 diameters, and scales 
on the larger physical structure in the flow, namely the primary vortex core. The 
wavelength for mode A is shown to be the result of an ‘elliptic instability’ in the near- 
wake vortex cores. The subsequent nonlinear growth of vortex loops is due to a 
feedback from one vortex to the next, involving spanwise-periodic deformation of core 
vorticity, which is then subject to streamwise stretching in the braid regions. This mode 
gives an out-of-phase streamwise vortex pattern. 

In contrast, mode-B instability has a distinctly smaller wavelength (1 diameter) which 
scales on the smaller physical structure in the flow, the braid shear layer. It is a manifest- 
ation of an instability in a region of hyperbolic flow. It is quite distinct from other 
shear flows, in that it depends on the reverse flow of the bluff-body wake; the presence 
of a fully formed streamwise vortex system, brought upstream from a previous half- 
cycle, in proximity to the newly evolving braid shear layer, leads to an in-phase stream- 
wise vortex array, in strong analogy with the ‘Mode 1 ’ of Meiburg & Lasheras (1988) 
for a forced unsepardted wake. In mode B, we also observe amalgamation of streamwise 
vortices from a previous braid with like-sign vortices in the subsequent braid. 

It  is deduced that the large scatter in previous measurements concerning mode A is 
due to the presence of vortex dislocations. Dislocations are triggered at the sites of 
some vortex loops of mode A, and represent a natural breakdown of the periodicity of 
mode A instability. By minimizing or avoiding the dislocations which occur from end 
contamination or which occur during wake transition, we find an excellent agreement 
of both critical Re and spanwise wavelength of mode A with the recent secondary 
stability analysis of Barkley & Henderson (1996). 

Wake transition is further characterized by velocity and pressure measurements. It 
is consistent that, when mode-A instability and large-scale dislocations appear, one 
finds a reduction of base suction, a reduction of (two-dimensional) Reynolds stress 
level, a growth in size of the formation region, and a corresponding drop in Strouhal 
frequency. Finally, the present work leads us to a new clarification of the possible flow 
states through transition. Right through this regime of Re, there exist two distinct and 
continuous Strouhal frequency curves : the upper one corresponds with purely small- 
scale instabilities (e.g. denoted as mode A), while the lower curve corresponds with a 
combination of small-scale plus dislocation structures (e.g. mode A*). However, some 
of the flow states are transient or ‘unstable’, and the natural transitioning wake 
appears to follow the scenario : (2D + A* -+ B). 
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1. Introduction 
There has been a great deal of work recently investigating three-dimensional aspects 

of wake flows behind cylinders. Most of the recent advances are comprehensively 
discussed in a review paper (Williamson 1996a), with a more general review to be 
found in Roshko (1993). It is now well known that end boundary conditions (at the 
ends of the span of a cylinder) are important in controlling wake patterns across the 
complete span (Williamson 1988 a, 1989; Eisenlohr & Eckelmann 1989; Hammache & 
Gharib 1989, 1991 ; and several others), and indeed in influencing whether the vortex 
shedding is parallel or oblique to the cylinder axis, in the laminar vortex shedding 
regime (in the range of Reynolds numbers, Re = 49-190). Some of the three- 
dimensional phenomena that have been discovered over the last eight years, for 
example oblique and parallel shedding, ‘phase expansions’ and ‘phase shocks’ (Miller 
& Williamson 1994; Monkewitz, Williamson & Miller 1996), cellular shedding and 
‘vortex dislocations’ (Williamson 1989, 1992; Konig, Eisenlohr & Eckelmann 1990, 
1992), are also found to occur under suitable conditions, at much higher Reynolds 
numbers, of the order of lo4 (Prasad & Williamson 1997b). Such three-dimensional 
wake phenomena at high Re have an important impact on the unsteady forces on a 
long structure, by influencing the phase and correlation of these forces along the span. 
However, only surprisingly few investigations have focused on the wake transition 
regime (in the approximate range, Re = 19&260). From these studies, we at present 
have almost no understanding of the physical origin of the three-dimensional small- 
scale instabilities that are fundamental to wake transition, despite the effective use of 
modern experimental techniques (for example particle image velocimetry, or PIV) and 
several recent and ongoing direct numerical simulations. Possibly this is partly because 
of the sensitivity of this regime to experimental conditions and to the difficulty in 
determining flow structure because of the intermittent nature of the flow. The present 
paper addresses directly the character and origin of these small-scale instabilities in 
‘wake ’ transition. 

The first definition of flow regimes based on measurements of velocity fluctuation, 
spectra and frequency was given by Roshko (1954). He found a ‘stable’ (periodic) 
laminar vortex shedding regime for Re = 40-150, a transition regime in the range 
Re = 150-300, with an ‘irregular’ regime for Re = 300-10000+, where velocity 
fluctuations showed distinct irregularities. Similar regimes were confirmed by Bloor 
(1964). A surge of recent work has shed further light on phenomena occurring in these 
regimes and their precise Reynolds number ranges. The cylinder wake as a whole 
involves the following three shear flows: a wake flow, a mixing layer flow separating 
from the sides of the body, and a boundary layer flow on the body surface. Each of 
these distinct shear layers becomes unstable as Reynolds numbers increase. In this 
paper, we are concerned with ‘wake’ transition around Re NN 200, rather than with 
‘shear layer’ or ‘boundary layer’ transition which occur at Re NN 1200, and at 
Re M 200000 respectively. 

In this introduction to the small-scale instabilities in wake transition, we shall make 
reference to the measurements of Strouhal-Reynolds number in figure 1, taken from 
Williamson (1988b, 1992), and to the velocity spectral measurements of figure 2. It may 
be observed that this wake transition, originally described by Roshko (1954), actually 
involves two discontinuous changes (Williamson 1988 b). At the first discontinuity the 
Strouhal frequency drops from the laminar curve (which is influenced by whether the 
shedding is parallel or oblique) to one corresponding to a ‘mode A ’  three-dimensional 
shedding, at around Re = 180-194. This discontinuity is hysteretic, and the exact 
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FIGURE 1 .  Strouhal-Reynolds number relationship over laminar and three-dimensional transition 
regimes. The transition regime is characterized by two distinct discontinuities in the measured wake 
parameters, as Re is increased, and may be conveniently interpreted with reference to this S-Re plot. 

critical Re depends on whether the flow speed is increased or decreased, and on the 
experimental arrangements, as we shall see below. As Re is increased up to the range 
Re = 230-260, there is a further discontinuity in Strouhal number S, indicating a 
further 'mode B'. This discontinuity may be contrasted with the first in that it is not 
hysteretic, and instead involves a gradual transfer of energy from mode A to mode B, 
as one increases Re. Interestingly, if one refers to the original S-Re data of Roshko 
(1954), one finds that most of his scatter is centred around Reynolds numbers 
corresponding to these two discontinuities. It will be seen later that each of these three- 
dimensional shedding modes corresponds to a spanwise instability in the wake. 

The definition of such Strouhal discontinuities is clearly only possible if one takes 
long time-averages of the spectra of wake velocity fluctuations. Such spectra are shown 
in figure 2, where the first discontinuity in (a )  exhibits two possible spectra at the same 
Re due to the hysteresis effect. At the second discontinuity in (b),  the spectra are twin- 
peaked. The lower-frequency peak corresponding to mode A gradually gives way to the 
peak at mode B, as Re is increased. This is due to an intermittent swapping between 
modes, rather than the simultaneous existence of both modes, and this point will be 
discussed later in this paper. One might suspect that these two modes are artifacts of 
the end conditions and are associated with an insufficiently long cylinder (around 200 
diameters long in 6). However, the results of C. Norberg (personal communication, 
1989) shown in (c) for a length/diameter ratio, L I D  = 2000, confirms the existence of 
the two modes A and B at large L I D .  

Although there have been surprisingly few measurements made in the transition 
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FIGURE 2. Velocity spectra from the near wake in the wake transition regime. (a) Spectra at the first 
discontinuity, showing hysteresis. Re = 172.8. ( L I D  = 200). (b) Spectra at the second discontinuity, 
showing gradual transfer of energy from mode A to B, as Re increases. Re = 207-318. ( L I D  = 200). 
(c)  Spectra at the second discontinuity, for high aspect ratio, L I D  = 2000, for Re = 234.1. From C. 
Norberg (1989, private communication). 
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regime to date, there are even fewer flow visualization studies, although some new 
phenomena in this region have been discovered in the last few years. Based on his early 
experimental velocity measurements, Roshko (1954) suggested that transition to 
turbulence existed in the separating shear layers before the vortices were fully formed 
and shed from the cylinder. High-frequency oscillations were later detected in the 
separating (and transitioning) shear layers by Bloor (1964). Wei & Smith (1986) 
observed that ‘secondary’ vortices were associated with these high-frequency 
oscillations, and hypothesized that it is the three-dimensional stretching of these 
secondary vortices that causes streamwise vortices to appear in the wake. However, 
although this scenario of shear layer transition is known to occur at Re greater than 
around 1200, the brief but significant visualizations of Hama (1957) showed that the 
instability in the wake transition regime takes the form of a three-dimensional waviness 
on the primary Karman vortices, and the formation of what Gerrard (1978) later calls 
‘fingers of dye’. Shear layer transition itself is a separate phenomenon in a higher-Re 
regime. We shall show in the present paper that Gerrard’s dye fingers are associated 
with vortex loops and streamwise vortices, like other well-studied free shear flows. 

The existence of two different modes of three-dimensional shedding in wake 
transition (modes A and B), involving vortex loops and streamwise vortex pairs, was 
briefly presented by Williamson (1988b, 1992), and these have some analogy with the 
streamwise structure found in free shear layers (for example, Bernal & Roshko 1986; 
Corcos & Lin 1984), and also in the unseparated wake that forms behind a splitter plate 
(Meiburg & Lasheras 1988). In mode A, corresponding to shedding frequencies along 
curve A in figure 1, the primary vortices deform in a wavy fashion along their length 
during the shedding process, as will be shown later in $4. This results in the local 
spanwise formation of vortex loops, which become stretched into streamwise vortex 
pairs. The spanwise lengthscale of these vortex loops is around 3 to 4 diameters, or 3/5 
to 4/5 primary wavelengths. At higher Reynolds numbers, when the Strouhal 
frequencies lie on curve B in figure 1 (i.e. after the second discontinuity), finer-scale 
streamwise vortex pairs are formed. In this case the primary vortex deformation is 
more spanwise uniform than for mode A, and the streamwise vortex structure has a 
markedly smaller spanwise wavelength of around one diameter or 1/5 of a primary 
wavelength. In the present paper, we shall present accurate measurements of spanwise 
wavelength corresponding to Reynolds numbers just beyond where wake transition 
begins (close to Re = 190), and these data follow from the more approximate 
presentations made in Williamson (1987). These and other results will be related to the 
approximate stability analysis of Noack & Eckelmann (1994), and to the recent 
Floquet stability analysis of Barkley & Henderson (1996). The experimental agreement 
with the latter work appears to be excellent, concerning the critical Re for transition 
and the most unstable spanwise wavelengths for mode A instability. It should also be 
mentioned here that Henderson & Barkley (1996) go on to show that the secondary 
bifurcation (near Re = 189) is subcritical, which is distinctly different from several 
previous investigators who concluded that this bifurcation is supercritical. This result 
relates to the possibility of a hysteresis at the 2D 3 mode A transition. A comparison 
between their instability analysis and the experimental mode A measurements, 
including the inception of vortex dislocations arising from a breakdown of the 
periodicity of mode A, is included in Williamson (1966b). 

Direct numerical simulations (DNS) are now contributing strongly to our 
understanding in this wake transition regime (Karniadakis & Triantafyllou 1992; 
Zhang et al. 1995; Henderson 1994, 1995; Mittal & Balachandar 1995a-c, 1996; 
Persillon & Braza 1996; see also the review of numerical work in Braza 1994). Three- 
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dimensional DNS computations of wake transition have clearly demonstrated the 
existence of both modes A and B in computations (Thompson, Hourigan & Sheridan 
1994, 1996; Zhang et al. 1995; B. N. Noack 1995, personal communications; R. D. 
Henderson 1994-1996, personal communications). Other work by Mittal & Bala- 
chandar (1995 u-c, 1996) has investigated the near-wake region, showing the structure 
of primary and streamwise vorticity interactions, indicating consistent results with 
some of the present conclusions, but the short spanlength in their case precludes 
discussion of modes A and B. Mittal & Balachandar (1996) suggest a process of what 
they call ‘ autogeneration’ of streamwise vortices, which has some relevance to the 
mechanisms causing mode B, and will be further discussed in this paper in $9. A 
further mode C three-dimensional instability has been proposed by Zhang et al. (1995), 
for Re = 170-270, based on the approximate stability analysis of Noack & Eckelmann 
(1994). The question as to the existence of such a mode (in a natural unforced wake) 
will be taken up in the Discussion $9, in the light of the full Floquet stability analysis 
of Barkley & Henderson (1996) and in the light of other experiments to date. 

The study of Karniadakis & Triantafyllou (1992) suggested that the wake becomes 
three-dimensional as a result of a secondary instability of the two-dimensional vortex 
street, which is confirmed by Barkley & Henderson (1996), discussed earlier. 
Karniadakis & Triantafyllou state that, as Re is increased, the wake velocity 
fluctuations indicate a cascade of period-doubling bifurcations, which create a chaotic 
state in the flow at around Re = 500. Period doubling in this case refers to the three- 
dimensional structure, rather than inferring the presence of primary vortex pairing. 
This scenario has recently been supported by DNS computations of Mittal & 
Balachandar (1995c), and also by the experimental results of Mansy, Yang & Williams 
(1994) and D. R. Williams (private communication), using an ingenious scanning laser 
anemometer. Despite the evidence above, it appears relevant that Thompson et al. 
(1994, 1966) do indeed find period doubling in their simulations, but only for small 
spanwise domains close to 10-1.50, and for larger domains there is no evidence of 
period doubling. The simulations mentioned earlier both have spanwise domains of 
around 10-1.50, so the matter of period doubling perhaps remains an interesting 
subject of further research. 

The present work was begun in 1986, whilst the author was at California Institute 
of Technology, and part of the early work was reported in Williamson (1987). A 
preliminary overview of some aspects of the wake transition problem was also 
presented in Williamson (1988b, 1992). The former paper introduces the two modes A 
and B and the two discontinuities in a plot of S-Re, while the latter paper is concerned 
with large structures in the form of ‘vortex dislocations’ in wake transition. The 
present comprehensive study intersects these other preliminary studies, but goes 
significantly further, and is concerned mainly with small-scale instabilities and modes 
rather than with the large-scale dislocations. In $3, we present some of the general 
characteristics associated with wake transition, with reference to both velocity and 
spectral measurements and also smoke and particle visualization, which demonstrate 
essentially the existence of the two scales of streamwise vorticity for the two modes A 
and B. In $4, we present spanwise wavelength measurements and a discussion of critical 
Re for wake transition, which is in excellent agreement with the Floquet stability 
analysis of Barkley & Henderson (1966) for the mode A instability. The physical 
origins for the growth of modes A and B instabilities are presented. In both modes, the 
mechanism of streamwise vortex stretching in braid regions between concentrated 
vortices has close similarities with the stretching and amplification of streamwise 
vorticity that has been made clear in free shear layer studies (Bernal & Roshko 1986; 
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Corcos & Lin 1984; Meiburg & Lasheras 1988; Rogers & Moser 1992; and several 
other papers, referenced therein). Streamwise vortex stretching in the wake has also 
been demonstrated by the simulation of Wu et al. (1995). It is shown in $4 that the 
symmetries of modes A and B streamwise vortex structure are distinctly different to 
each other. It is of interest that both of these natural modes in the separated wake may 
be related to the two forced patterns in an unseparated wake from a splitter plate, 
studied by Meiburg & Lasheras. In $ 5 ,  we present wake velocity and spectral 
measurements, which show rather distinct changes associated with transition. We find 
consistent variations of stress, base suction, wake width and formation length, as the 
flow undergoes wake transition. The marked peak in base suction and in the level of 
stress in the near wake at a Reynolds number of 260. coupled with the almost periodic 
velocity fluctuations, and the ordered flow structure, leads one to suspect that there is 
some form of resonance at this Re. In $6, it is suggested that an interaction between 
the instability of the separating shear layer and the instability of the wake could 
possibly explain this resonance at Re = 260. 

Having indicated, from the velocity measurements, the predominance of very large 
scales in the flow in 95, we are led into a brief discussion of large-scale 'vortex 
dislocations' in $7. These are vortical structures which originate from phase 
dislocations of the primary vortex shedding near the body, and were shown in 
Williamson (1992) to be a significant fundamental natural phenomenon in the wake 
transition regime. They should not be confused with such dislocations which can occur 
at the spanwise ends of a long cylinder (Gerich & Eckelmann 1982; Eisenlohr & 
Eckelmann 1989; Williamson 1989) due to the existence of cellular shedding near the 
ends. In $8, we discuss the possible stable and unstable flow states through wake 
transition, relating the existence of dislocations to the sharp and hysteretic drop in 
Strouhal frequency, as mode A appears in the data of figure 1. In $9, there follows a 
discussion, and a comparison of the present experimental results with those recently 
found in DNS computations. The conclusions follow in 4 10. 

2. Experimental details 
Measurements of velocity fluctuations were made with a miniature hot wire situated 

in the wake of cylinders of diameter 0.00051, 0.00061 and 0.00108 m, in a 0.305 m 
square test section (12 in. by 12 in.) of an open-circuit suction wind tunnel at Cornell. 
Some of the measurements were made in a 6 in. circular-test-section open-jet wind 
tunnel at California Institute of Technology, whose details were described in 
Williamson (1989). The turbulence level was close to 0.1 YO, with flow uniformity better 
than 0.3%, in both facilities. A good deal of care was taken to isolate the cylinders 
from the tunnels, and to damp out any cylinder vibrations. In most cases, the spanwise 
end conditions comprise end plates parallel with the flow, in the manner described in 
Williamson (1 989). 

Flow visualization in air at Cornell was conducted using a smoke-wire system in the 
manner originally described by Corke et af. (1977). Flow visualization was also 
conducted in an X-Y Towing Tank (at Caltech). Cylinders of diameter 0.00328 and 
0.00657 m were towed along the length of the tank, and the shed vorticity was 
visualized using laser light which excited fluorescein dye washed off the surface of the 
cylinders. In the case of stereoscopic flow visualization, two synchronized Nikon F3HP 
motordrive cameras were used. They were linked to a function generator which output 
TTL pulses at a prescribed low frequency of typically around 0.3 Hz. An effective yet 
simple aluminium-flake technique was also used, whereby the water channel contained 
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a homogenous distribution of flakes, which were then disturbed by the passage of the 
towed vertical cylinder. From the orientation of the light sheet source (parallel to the 
wake centreplane yet out to one side) coming from below the tank’s glass bottom, 
coupled with the camera looking horizontally at the wake patterns through the sidewall 
of the tank, it proved possible to determine the patterns of streamwise vorticity. The 
brightest reflections came from the flakes which were wound around the horizontal 
(streamwise) vortices. 

The origin of the wake coordinate system is fixed on the axis of the cylinder. The x- 
axis is downstream, the y-axis is perpendicular (defined as transverse) to the flow 
direction and to the cylinder axis, and the z-axis lies along the axis of the cylinder 
(defined as spanwise). Similarly, in the discussions of near-wake vortex instability, the 
(x, y)-plane is the cross-sectional plane, while the z-axis is measured spanwise along the 
vortex. Unless otherwise stated, the data for the transverse velocity profiles are 
measured for positive y, and the mirror image used for negative y, under the 
assumption of symmetry. 

3. General characteristics associated with three-dimensional wake 
transition 

Velocity spectral measurements in the wake transition regime display quite different 
characteristics at the two Strouhal frequency discontinuities, as described in the 
Introduction. In the case of the drop in frequency as the laminar shedding regime 
changes to mode-A three-dimensional vortex shedding, there is a hysteresis. On the 
other hand, the second discontinuity from mode A to mode B is characterized by the 
twin peaks in the spectra, and a gradual transfer of energy from the lower frequency 
of mode A to the higher frequency of mode B, as Re is increased. The point must be 
made that this is not due to a coexistence of these two frequencies at one time, as one 
may naturally think, but is due to an intermittent swapping between the lower- 
frequency and the higher-frequency modes. Experiments have shown that, over as 
short a time as possible to retrieve a spectrum, one can observe predominantly one 
of the modes, with subsequent spectra intermittently exhibiting predominantly the 
other mode. Clearer spectra averaged over longer time show both modes, as found in 
figure 2. 

In figure 3, we show clearly the transfer of fluctuation intensity from mode A to mode 
B, as Re increases. This is represented by the measurement of evaluated 
at the peak frequencies in the spectra. Both modes A and B have equal energy at close 
to Re = 245, and by Re = 260 only mode B can still be detected. In figure 3(b), we 
further characterize the spectra by a measurement of bandwidth, showing a sharp jump 
increase, as expected, as one changes from laminar to mode-A shedding (near 
Re = 190), followed by a further dramatic maximum in bandwidth around Re = 245, 
where the two modes are competing equally. A sharp reduction in bandwidth is 
reached for Re = 260 and above, as the flow settles continuously into the mode B. In 
fact, these trends are even clearer if one deliberately induces parallel shedding by 
manipulating the end boundary conditions, as shown in Prasad & Williamson (1997b). 

Velocity fluctuations correspondingly exhibit distinct characteristics as Re increases 
through wake transition. In figure 4, the laminar-shedding periodicity at Re = 152 
gives way to intermitting ‘glitches’ in the time traces at Re = 210, which have been 
interpreted, using simultaneous visualization with velocity measurement in Williamson 
(1992), to mark the passage of vortex dislocations past the measuring probe. It is 
significant that the broad spectra reflect the presence not only of mode-A small-scale 
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FIGURE 3. Peak energy and bandwidth of the spectra, through the wake transition regime. (a) Peak 
values of ( U ; , ~ , / U )  measured at  the peaks in the spectra, clearly exhibiting the transfer of energy from 
mode A to mode B. (b) Spectral bandwidth through wake transition. The maxima correspond with 
the competition between modes of shedding. 

instabilities, but also of the very large scales of the dislocations. We shall show how 
these two phenomena are related directly to each other in $7. At the higher 
Re = 260, in figure 4, the glitches are almost non-existent, suggesting that the 
dislocations are very sparse, and indeed cannot be detected at all if parallel-shedding 
end conditions are deliberately arranged. At Re = 520, the time trace has become less 
periodic, as wake three-dimensionality becomes more disordered. 

Corresponding flow visualization, using smoke, in figure 5 ,  shows clearly that there 
are distinct stages through wake transition, as deduced briefly in Williamson (1988 b). 
The laminar shedding case Re = 152 appears remarkably like the case at Re = 260 
(noting that in both these photographs we have parallel shedding). Aside from the fact 
that the streamwise wavelength is less at Re = 260 than at Re = 152, there is an ordered 
fine-scale three-dimensional structure at Re = 260 for mode B (visible by scrutinizing 
this photograph), which is not present at Re = 152 in the laminar-shedding regime. 
One can exert control over shedding angle through end boundary condition 
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FIGURE 4. Typical time traces of velocity fluctuation through the wake transition regime. Transition 
involves the loss of periodicity at Re = 210, although it is closely regained at Re = 260, despite the 
presence of small-scale three-dimensionality in the flow. Beyond the wake transition regime, 
increasing disorder is evident in the fluctuations of Re = 520. Hot-wire is at x / D  = 10, y / D  = 1.3. 

manipulation at (and above) Re = 260 for mode B (Prasad & Williamson 1997b), just 
as one can control the flow pattern in the laminar regime. However, this is not the case 
at the intermediate Reynolds numbers, as indicated, for example, by the mode A case 
at Re = 2 10, where the presence of intermittent (naturally occurring) dislocations 
across the complete span effectively decouples the end conditions from the bulk flow 
across the span. The wake shedding pattern is broken up, and has the same appearance 
and a similar spectrum, irrespective of whether parallel or oblique shedding conditions 
are attempted by end manipulations. 

By the use of aluminium-flake visualization in figure 6 for Re = 205 and 260, we can 
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FIGURE 5.  Smoke visualization through the wake transition regime. Corresponding with the loss of 
periodicity at Rc = 210 in figure 4. is a breakup in the spanwise coherence of  vortex shedding, due 
to the presence of large-scale (dislocation) structures in the flow. The return to a closely periodic flow 
at Re = 260 corresponds with the almost laminar-shedding appearance at this Re, although one can 
observe regular small-scale structures at Re = 260, which are not present at Re = 152. Flow to the 
right, with smokc wire located lo l l  downstream of  vertical cylinder axis on the left. 



356 C. H .  K. Williamson 

FIGURE 6. Aluminium-flake visualization in planview : evidence for distinct streamwise vortex 
structure for modes A and B. There is clearly a jump in the spanwise lengthscale of the streamwise 
vortices between Re = 205 (mode A) and Re = 260 (mode B). Note that this technique enables one 
to see predominantly streamwise vorticity by the white regions, and that the method shows essentially 
the instantaneous structure, without the well-known history effects of dye and smoke injection. Flow 
is to the right, with vertical cylinder a t  left. 
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FIGURE 7. Aluminium-flake visualizalion in cross-sectional view: evidence for the location of 
streamwise vorticity in the braid shear layer regions between primary vortices. One may simply 
contrast. with this technique, the dark regions at  Re = 150, indicative of two-dimensional wake 
formation, with the white regions at RP = 260, indicative of the streamwise vorticity in the braids. 
increasing disorder of this three-dimensional structure is observed at Re = 700, although clearly the 
vigorous streamwise vorticity remains resident in the braids. Flow is to the right past the cylinder on 
the left. 
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demonstrate the existence of streamwise vorticity of distinct spanwise wavelength for 
modes A and B vortex shedding. In these cases, the vertical cylinder is at the left edge 
of the photographs, and is moving to the left. The light sheet is parallel to the wake 
centreplane, but is located towards the viewer relative to the centreplane. As the wake 
widens laterally downstream, it pushes through the light sheet, towards the viewer. 
Since the light sheet comes from a source below the photographs, and we are using 
aluminium flakes, which orient themselves with the stream surfaces in the fluid, the 
horizontal bright lines now represent horizontal, or ' streamwise ', vortices in the wake 
flow. At Re = 205, for mode A, we can clearly see that the spanwise wavelength of the 
streamwise vortex structure is distinctly larger than for mode B shown below at 
Re = 260, where the structure is strikingly periodic and well ordered. The sharp 
difference in spanwise lengthscale between the two modes A and B already suggests 
strongly that there are two distinct spanwise instabilities in the wake flow. This will be 
made evident in the next Section. 

Finally, one can observe, even in the cross-sectional plane, the presence of 
streamwise vortices. Again, the aluminium-flake technique is used, see figure 7, and the 
white regions (within the wake structure) mark the presence of streamwise vortices. 
One should note that the technique does not involve a flow marker like dye or smoke, 
which have a history effect, but rather the flake patterns are responding to the flow 
structure at the time the photographs are taken. For the case Re = 150, we can also see 
the dark regions where flakes are oriented around the axes of the primary vorticity 
(whose vectors are perpendicular to the photographs), and the density of reflecting 
flakes is even less than for undisturbed fluid. It is clear, by comparing Re = 152 
(laminar shedding) with Re = 260 (mode-B shedding) that the streamwise vortices lie 
along the braid shear layer regions between primary vortices. It is here that streamwise 
vorticity is vigorously stretched in the strain-rate field due to the primary vortices, in 
the same manner as found in mixing layers and unseparated wakes (Bernal & Roshko 
1986; Meiburg & Lasheras 1988). Although this simple, but effective, technique of 
flow visualization shows clearly the location of the streamwise vorticity, it is also 
confirmed by the extensive measurements of Wu et ul. (1995). As one increases Re to 
Re = 700, figure 7 shows a persistent presence of these streamwise vortices. Indeed it 
is shown in figure 1 of Williamson (1996~) that streamwise vortices are present at 
Re = 4000 (using the present technique), and they are found at Re = 270000, from the 
schlieren photographs of Thomann (1959). Their presence is shown experimentally for 
moderate Reynolds numbers (of order lo3-lo4) by Wei & Smith (1986) and by 
Bays-Muchmore & Ahmed (1993) using hydrogen bubbles in water, and by Chyu & 
Rockwell (1996) using DPIV techniques. 

The two scales associated with modes A and B instabilities are often complicated by 
the presence of the large-scale dislocations, and, possibly for this reason, almost no 
understanding of the physical origin of these two modes is at present to hand, despite 
the few papers which investigate wake transition. These questions are directly 
addressed in the following section. 

4, Instability modes A and B in wake transition 
We have seen in the previous section that modes A and B involve streamwise vortex 

structures of distinct spanwise lengthscale. In this section, we shall investigate the 
instabilities causing these modes to appear, and it will be seen that the two instabilities 
scale on different physical parts of the wake flow. 

In figure 8(a),  the dye visualization shows the mode-A instability at Re = 200, 
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demonstrating that the primary Karman vortices develop a waviness from which 
vortex loops evolve. In this case, we may note that the spanwise wavelength is given 
by h / D  = 4.01 for Re = 200. Mode B is shown in figure 8(6) at Re = 270, to exactly 
the same scale as in (a) In sharp contrast to mode A, this mode is characterized by a 
much smaller spanwise scale of close to h / D  = 1, again suggesting the existence of a 
distinctly different mechanism to cause spanwise instability than is found for mode A. 

The precise value of critical Reynolds number at which wake transition first appears, 
and the wavelength of the initial instability, are both surprisingly difficult to evaluate 
from experiment and simulation, as is evident from the large scatter in the literature 
(see figure 9 a). However, a precise definition of these measurements is indeed possible, 
if one considers two experimental characteristics : the contamination from end 
boundary conditions, and the fact that one must measure spanwise wavelength in the 
absence of interfering dislocations. (We refer here to those dislocations spontaneously 
occurring along the span in the transition regime, not to those induced by the end 
conditions.) At the present time, Barkley & Henderson (1996) have just completed a 
highly accurate Floquet stability analysis, from which one may compare, with the 
experiments, the conditions for the initial instability of mode A. 

4.1. Incipience of wake transition 
Regarding the inception of wake transition in experiment, there is a relatively large 
range of critical Re for wake transition (Re = 14CL190) quoted in the literature. 
Surprisingly, the origin of these differences has had almost no attention in the 
literature, except for the study by Bloor (1964), and recent studies by Hammache & 
Gharib (1989), and Miller & Williamson (1994). Bloor found that Re,,,, could vary 
between 140 and 190, depending on the level of free-stream turbulence (0.03-1 .O YO), 
although the end conditions are unknown in these experiments. However, it now 
appears that in a number of facilities, even with essentially the same turbulence level 
(of order 0.1 YO) and comparable oblique shedding angles, investigators have 
nevertheless found a large disparity in Re,.,, : for example, Roshko (1954) and 
Tritton (1959) found Re=  150; Zhang et al. (1995) found Re=  160; Eisenlohr & 
Eckelmann (1989) and Norberg (1994) found Re = 165; and Williamson (1988a, 1989) 
found Re = 178. In a related study, Hammache & Gharib (1989) suggested that 
transition was triggered early at Re = 156 by the fact that the shedding was oblique, 
rather than parallel, although in changing the oblique angles, they were simultaneously 
varying the end conditions. In contrast, Leweke & Provansal(l995) have found, in the 
wake of a ring cylinder (torus), that the oblique modes have a higher critical Re than 
the parallel modes, which suggests just the opposite result. 

It has recently been shown (Miller & Williamson 1994) that non-mechanical end 
conditions (using suction tubes downstream of the body) can yield rather ‘clean’ end 
conditions, in essence without the large unsteady flow structures (vortex dislocations) 
at the cylinder spanwise ends that are normally present. It is found that, under these 
conditions, the laminar regime for parallel shedding can be extended up to 
Re,,,, = 194, as indicated later in the data of figure 34. The central conclusion from 
the above studies is that wake transition is triggered early due to end conditions, and, 
in the absence of other effects, it would appear that end contamination could account 
for the large scatter in the quoted critical Reynolds numbers for transition, reported 
over the last forty years. Physically, this contamination takes the form of regions of 
vortex dislocations moving across the span. 

The above conclusions regarding an accurate determination of critical Re from 
experiment are most timely since analytical studies are, at the present time, predicting 
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FIGURE 9. Spanwise instability wavelengths of the two three-dimensional instabilities. Normalized 
spanwise wavelength of streamwise vortex structures (h , /D)  versus Re. It can be seen that there are 
two distinct wavelengths for mode A and B instabilities. (b)  Comprises only part of the data of (a) ,  
and compares experimental data for mode-A instability wavelengths with the Floquet analysis of 
Barkley & Henderson (1996). It is significant that in the latter more-accurate experimental data, 
measurements are made for purely mode A, in the absence of interfering dislocations. 

critical Reynolds numbers for wake transition. Noack & Eckelmann (1994) have 
conducted an approximate analysis, using a low-dimensional Galerkin method (with 
100 modes), and find Re,,,, = 170, somewhat below the experimental value of 194. 
However, Barkley & Henderson (1 996) have predicted three-dimensional instability 
from their Floquet stability analysis (including 10000 modes), and find Re,,,, = 188.5 
(_+ 1.0), which is in excellent agreement with the recent experiments. It should also be 
mentioned that Persillon & Braza (1996) also find a critical R e  close to 189, based on 
(nonlinear) DNS computations. In fact, it is quite possible that the small differences in 
RecR,, between the Floquet results and the experiments can be attributed to the fact 
that a small wavy instability may indeed exist in the experiment, prior to Re = 194, but 
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which is insufficient to begin to form dislocations, and thereby to cause a broad 
spectrum and a corresponding reduction in Strouhal number. These were the 
experimental characteristics that were taken to indicate transition, in this case. 

Comparisons of experimental and theoretical predictions of spanwise wavelengths 
for modes A and B can now be made in figure 9,  using the stability analysis of Barkley 
& Henderson (1996). In the collected experimental data in figure 9(a), it can be seen 
that there is a discontinuous reduction in lengthscale, as one passes through the second 
discontinuity of figure 1 (Re = 230-250). However, what also appears to stand out in 
figure 9(a)  is the large degree of scatter for the mode A measurements. Despite this 
evident large scatter, indicating a range of h,/D = 3.0-5.0, Zhang et al. (1995) interpret 
the wavelength as having a constant value: h,/D = 4.0, for mode A. On the other 
hand, Mansy et al. (1994) find values close to h,/D = 3.0, and the data of Williamson 
(1987) suggest a decreasing wavelength as Re increases, although again the degree of 
scatter precluded precise conclusions. However, this latter trend is now confirmed in 
the present measurements, where it appears that one can only make suitable accurate 
measurements of the mode-A wavelength during the early stages of the instability. 
Such measurements have been made possible in our towing tank, where the data for 
spanwise wavelength may be extracted before dislocations appear spontaneously along 
the span. 

In figure 9(b), we can see that there is excellent agreement between the present 
experimental determination of mode-A wavelengths, when measured accurately in the 
above fashion, with the curve of wavelengths having maximum growth rate, derived 
from the theoretical data in Barkley & Henderson (1996). The experimental data 
measured for Re > 230 reflect a transient condition, whereby mode A appears in 
advance of mode B (or a mix of A and B, indeed in advance of dislocations), during 
an experimental run. This is a transient feature confirmed by numerical simulations 
(Thompson e f  al. 1994). The prediction from Barkley & Henderson of a range of 
unstable wavelengths, which is a function of Re, almost (but not quite) encompasses 
all the scatter of mode-A experimental data in (a). At their critical Reynolds number, 
Re,,,, = 188.5, Barkley & Henderson find an instability wavelength for mode A of 
h,/D = 3.96. This is surprisingly close to the present measurements, one of which may 
be derived directly (with a ruler) from the visualization in figure 8(a), yielding 
h,/D = 4.01 at Re = 200. (Accurate measurements were made from enlargements of 
the original photographic negatives.) It should, however, be noted that vortex loops 
have been observed in experiments at Re lower than 194, under conditions when there 
is early transition associated with the presence of contaminating dislocations from the 
ends of the body. 

4.2. Origin and symmetry of mode-A three-dimensional instability 
Despite the excellent agreement between experiment and theory for the critical 
Reynolds number for wake transition, and for the initial wavelengths of instability, one 
is left with the central question as to what is the physical origin of these three- 
dimensional instabilities, and it seems from the jump in lengthscale that there exist two 
different three-dimensional instability phenomena, scaling on two different physical 
features of the wake flow, as mentioned earlier. 

Mode A would appear to be due to an instability of the primary vortex core during 
the process of shedding, causing a spanwise waviness. The spanwise core instability is 
clearly evident in the wake visualizations from the start-up conditions in the towing 
tank, where the early state of the instability may be observed. (An example of such an 
early-developed flow visualization may be found in Leweke & Williamson 1996.) The 
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FIGURE 10. Visualization of self-sustaining vortex loop formation of mode A. One may observe the 
vortex loop marked with a blob in the sequential photographs being deformed by the presence of the 
previous vortex loop, thus generating a series of loops at  the same spanwise location. Flow is to the 
right past the vertical cylinder on the left. 
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FIGURE 11. Location of vortex loops from simultaneous views in plan and cross-sectional planes. The 
vortex loop segment of the primary vortex, as seen in the cross-sectional plane, appears to be in the 
more central region of the near wake. It is thus pulled from the primary vortex back upstream, while 
the rest of the primary vortex sheds into the wake. Simultaneous views are made possible with the 
use of systems of mirrors, with both images focused into a single camera. 

subsequent growth of vortex loops is due to a feedback mechanism from one primary 
vortex to the next. During an experimental run, the initially small waviness grows until 
vortex loops, pulled out of the deforming primary vortices, are stretched in the braid 
regions. Not surprisingly, the spanwise wavelength of the vortex loops is equal to the 
initial wavelength found in the primary vortex cores. This vortex deformation and loop 
generation is self-sustaining, as demonstrated clearly in figure 10, where we may follow 
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FIGURE 13. Superposition of reverse-flow region from the simulation onto dye visualizations, a t  the 
spanwise location of a vortex loop. This demonstrates experimentally the vortex deformation or 
tearing during shedding due to the placement of part of the primary vortex in the reverse-flow region 
of the near wake. 

the loop, marked with the blob, deforming under the influence of the previous vortex 
loop. The sides of the loop, in the strong strain rate between primary structures, roll 
up to form a streamwise vortex pair. This deformation and stretching, also described 
in brief in Williamson (1 988 b), has also been confirmed by the numerical simulations 
of Mittal & Balachandar (1995 c). Simultaneous images in cross-section and from side 
view can be seen in figure 11, by the use of a system of mirrors in the experiments. The 
sequence of cross-sectional views suggests that the loop segment of the primary vortex 
is located more towards the centreplane of the wake than the rest of the vortex, and 
appears to be pulled out of the primary vortex in a reverse-flow region behind the body. 

The deformation, or indeed this ‘tearing’, of the primary vortex during shedding can 
be confirmed from a combination of experiment and direct numerical simulation. We 
shall look at the cross-sectional flow in figure 12 that is responsible for setting up the 
reverse-flow and strain-rate field, causing streamwise vorticity stretching, not only 
for mode A, but also relevant for mode B. Direct numerical simulations of the two- 
dimensional cylinder wake at Re = 200 were carried out by Karim Shariff at NASA 
Ames, and kindly made available in 1990 to the author (for computational details, see 
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FIGURE 14. Physical mechanism to produce vortex loops of mode A. Segments of the primary vortex 
cores are pulled out of the primary structure as it is shed, and form an array of vortex loops. The self- 
sustaining formation of loops at a particular spanwise location is due to the Biot-Savart induction of 
one vortex loop on a newly forming primary vortex, as shown in the sketch. This produces the out- 
of-phase symmetry of the streamwise vortices for mode A, shown in figure 20. 

Shariff, Pulliam & Ottino 1991). These simulations included 24 instances during a 
shedding cycle where simultaneous contour plots of vorticity and streamline patterns 
were computed, two of which are shown in figure 12. The saddle point of the streamline 
pattern has also been included in the vorticity plots to indicate where much of the 
streamwise stretching of vorticity is occurring. (This is further quantified in figure 22.) 
Regions of reversed flow in the lowest diagrams have been deduced from the streamline 
patterns. One may expect vorticity to be convected back towards the cylinder, against 
the free-stream direction, in these reverse-flow regions (noting that these are of course 
instantaneous patterns). Interestingly the reverse-flow region includes both of the 
critical points in the wake flow, namely the saddle point and the vortex centre, and it 
should be noted that the reverse-flow region extends downstream further than the 
saddle point itself. 

The simulation in figure 12 shows evidence for vortex deformation or ‘tearing’, in 
the manner observed experimentally for both modes A and B. Part of the primary 
vortex marked * in ( a )  is being pulled back upstream during shedding, while the 
remaining segment of the primary vortex travels downstream. Vortex tearing during 
shedding is shown experimentally rather clearly in figure 13. In this case for Re = 210, 
we are viewing a particular cross-section which captures the formation of a vortex 
loop. (One should note, in such a visualization, that the dye is less diffused than the 
actual vorticity would be.) As precisely as possible, the corresponding vorticity contour 
plots from the numerical simulations have been placed over the photographs, and to 
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FIGURE 15. Video evidence of out-of-phase streamwise vortex symmetry for mode A. Each 
photograph, taken half a cycle apart, is extracted from video images looking upstream from behind 
the cylinder, and normal to a planar light sheet (at x / D  e 2) in the near wake. The passage of 
fluorescent dye (washed off the body) passing through the sheet shows the distinct symmetries of the 
streamwise vortices. Re = 200. 

the same scale, in order that the reverse-flow region can subsequently be drawn onto 
the photographs. In figure 13, one can clearly observe the tearing of the primary vortex, 
as a segment is caught in the reverse flow and convected back towards the body, while 
the remaining segment of the primary structure sheds downstream. This process is 
similar to the tearing of weak vortices that can often be observed in mixing layers (see 
Ho & Huerre 1984). Such vortex deformation, in the case of the wake, places significant 
primary core vorticity into the braid regions, where streamwise vortex stretching 
amplifies the three-dimensionalities. In the case of mode A, this deformation occurs at 
particular spanwise locations where vortex loops are forming, which will be further 
discussed below. For mode B, the deformation occurs more uniformly along the span. 

The spanwise lengthscale of mode A is given by the spanwise waviness of the primary 
vortex cores, the origin of which will be discussed in 54.4. What is observed 
experimentally is that the first spanwise segments of the primary vortex to get ‘caught’ 
in the reverse-flow region during shedding will be the parts of the wave that are most 
upstream. In figure 14, we show the mechanism whereby these vortex loops are self- 
sustaining at the same spanwise location. A previously formed vortex loop A convects 
close to the shedding primary vortex B. The induced velocity due to the head of the 
loop A will retard a segment of the vortex B at the same spanwise position, by 
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Biot-Savart induction. From this segment, a vortex loop will be drawn out of the 
primary structure. The process will continue from one vortex to the next in a self- 
sustaining mode. From the sides of the loops, streamwise vortices will roll up, in a 
process which naturally causes an out-of-phase symmetry of the streamwise vortex 
array. Although most (but not all) of the streamwise vorticity for mode A comes from 
vorticity initially pulled out of the core into the braid region during shedding, the 
stretching thereafter occurs in a manner similar to the strong straining near the ‘braid’ 
saddle point in a mixing layer (Corcos & Lin 1984; Meiburg & Lasheras 1988). 

In order to confirm the symmetry of the streamwise vortex structure of both modes 
A and B, we set up a video arrangement coupled with our water channel facility, which 
looks directly upstream and normal to a plane light sheet situated in the near wake of 
the cylinder. This experiment proved to be highly revealing, as follows. In the case of 
mode A, the video images taken half a cycle apart shown in figure 15 proved what was 
already deduced from the above, namely that the streamwise vortex structure for mode 
A follows an out-of-phase pattern of streamwise vortices. The symmetry of both modes 
A and B is shown schematically later in figure 20. In the following section, we shall find 
that the symmetry of mode B is quite distinct from that for mode A. 

4.3. Origin and symmetry of mode-B three-dimensional instability 
The instability of mode B would not appear to be related to a waviness of the primary 
vortex as in mode A, since these vortices deform much more uniformly along their 
length. In contrast with (long-wavelength) mode A, which scales on the larger primary 
vortex core dimensions, we shall show that the (small-wavelength) mode B scales on 
the smaller dimensions of the braid shear layer. 

Mode B involves an instability with a wavelength of around l D ,  from Reynolds 
numbers of around 260 up to at least 10000, as given by the data of Mansy et al. (1994), 
Lin, Towfighi & Rockwell (1995a, b), Williamson, Wu & Sheridan (1995), and Chyu & 
Rockwell (1 996). This roughly constant wavelength is consistent with the independence 
of spanwise scale found for turbulent mixing layers by Bernal & Roshko (1986). The 
laser-induced dye visualization in figure 16 shows the streamwise vortices when they 
are cut by a thin light sheet close to, and parallel with, the wake centreplane. The 
mushroom-like pattern comprises alternate-signed vortices in a row which resides in 
the braid region. The pattern indicates an almost spanwise-periodic system of vortex 
pairs representative of a range of Re = 260-300, with a wavelength of A,/D = 0.98 (in 
this case). 

The symmetries of these wake patterns (A and B) are intimately linked to the fact 
that streamwise vortices formed in a previous half-cycle are in the vicinity of newly 
forming streamwise vortices. We can understand the mode-B symmetry (which we shall 
prove later has an in-phase streamwise vortex pattern) by considering the induced 
velocity of a periodic array of pre-existing streamwise vortices ‘imprinted’ onto a 
newly forming braid shear layer, as in the diagrams of figure 17. The velocity field due 
to the already-formed streamwise vortex array in braid A will be such as to induce a 
spanwise waviness in the newly forming braid shear layer B, and will lead to a preferred 
phase relationship for the new set of streamwise vortices, relative to the pre-existing set 
of streamwise vortices. To illustrate this point, let us consider the vortices in braid A 
as point vortices of strength r, with spanwise wavelength equal to A ,  and with the 
origin through an anticlockwise vortex, as shown in figure 17(b). In the vortex array 
A, we may note that we have, for n = 0, 1,2,3, ..., 

positive vortices at nh, z = 0, -t A, & 2 4  . . . = 
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FIGURE 16. Cross-sectional view of mode-B streamwise vortex structure. We can see clearly the 
smaller-scale ' mushroom ' vortex pair structures of mode-B vortex shedding, using laser-induced 
fluorescence. A / D  = 0.98; Re = 300. There is a remarkable similarity between this vortex array and 
that found in a mixing layer, Bernal & Roshko (1986). 

negative vortices at 

The horizontal velocity (0) due to the vortex array in A may be given as 

z = f h/2, & 3h/2, . . ., = k (n + 1/21 A. 

v = (I '/h) cosh (2xylh) [sin (2nz/h)/coshz(2xy/h) - cos2(2xz/h)] (1) 

which is well approximated, when braid B is horizontally separated by a distance 
y = h/2 or more from the line of vortices in A, as 

v = [(T/h)/cosh (2ny/h)] sin (27cz/h). (2) 

The perturbation due to vortices in A could thus be well modelled as a sine wave in the 
manner sketched in figure 17(b). One now questions how this sinusoidally perturbed 
braid B will generate streamwise vorticity. 

In order to determine the evolving system of streamwise vortices in the new braid 
shear layer B, one might naturally imagine that a spanwise undulation in such a shear 
layer is three-dimensionally unstable, much like the mechanism of Hama (1963), where 
a sinusoidally perturbed vortex filament becomes stretched into long streamwise 
vortices in a background shear flow. However, the limiting cases of oblique waves of 
angle 90" (our case here) on the limiting Stuart vortex array (a 'tanh' shear layer 
profile, representing our braid shear layer) is the only case in Pierrehumbert & 
Widnall's (1982) analysis which is not linearly unstable to the translative instability! 
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vortex B 

Streamwise vortex pairs 
from previous braid A L Cause pertubations in braid B 

FIGURE 17. Physical mechanism in the braid shear layer to produce mode-B streamwise vortices: 
preferential phase relationship of streamwise vortices from one braid to the next. The presence of a 
previous array of streamwise vortices (A) close to the forming braid shear layer (B) causes spanwise 
perturbations on the new shear layer. Perspective view. (b) The line of vortices in braid A will cause 
spanwise waviness in the new braid shear layer in the manner shown. View looking upstream in 
section AA. 

On the other hand, the presence of a saddle point (or line) in the braid shear layer 
does indeed ensure the three-dimensional instability, and the formation of streamwise 
vortices, as follows. We now consider a vortex filament in shear layer B in the 
neighbourhood of the saddle point (which could previously be noted in the cross- 
sectional simulations of figures 12 and 13). It may be observed that the saddle point 
extensional axis is rotated with respect to the shear layer, in just the same manner as 
found by Martin & Meiburg (1991) for the braid region of a jet, and this is shown in 
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FIGURE 18. Amplification of streamwise vorticity close to tiled saddle point, for mode B. The initially 
vertical lines of the braid shear layer are perturbed by the previous braid vortices into a transverse 
( y )  spanwise waviness (see figure 17). It is the presence of the cross-sectional saddle-point flow field 
that generates streamwise vorticity; point b is taken upstream, and likewise point a is taken 
downstream, causing the streamwise wavy vortex lines, as shown. Maximum streamwise + and - 
vortices will be generated opposite the same-sign original vortices in the previous braid. Thus the new 
braid vortices are a repeat of the old braid vortices, and we have an in-phase streamwise vortex 
pattern. In a sense, the old braid vortices imprint themselves into the new braid shear layer. 

figure 18. The saddle-point flow, at the top of the figure, represents the cross-sectional 
flow field set up by the large primary vortices, which is acting at all horizontal cross- 
sections throughout the vertical extent of the braid. Point b from the perturbed shear 
layer of the previous figure is pulled towards us (in figure 18), into a region of the 
saddle-point flow which is moving fluid upstream. Likewise, point a is perturbed away 
from us, and is taken downstream by the saddle-point flow. In this manner, the initially 
vertical vortex lines in the braid shear layer become stretched into an approximate sine 
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F~GURF 19. Video evidence of in-phase streamwise vortex symmetry for mode B. The photographs 
are taken half a cycle apart in the manner described for figure 15. Re = 280. 

wave in the streamwise direction, as shown in figure 18. These vortex filament motions 
will also induce tilting and stretching of streamwise vorticity in the entire region of the 
shear layer in proximity to the saddle point, rather than simply right a t  the saddle 
point. Positive and negative streamwise vorticity is thus induced in the new braid shear 
layer. and i t  has a particular phase relation with the pre-existing streamwise vortices, 
as shown below. 

The maxima in positive streamwise vorticity (as defined earlier, namely anticlockwise 
when looking upstream) will be where the vortex filament vector is most aligned in the 
streamwise downstream direction. An example where one of the maximum positive 
vortices in braid B will lie is where the vorticity vector is most directed downstream, 
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Mode A symmetry 

Mode B symmetry 

FIGURE 20. Symmetry diagrams of modes A and B. Mode A, of large spanwise wavelength, comprises 
an out-of-phase sequence of streamwise vortices from one braid to the next one. Mode B, of small 
spanwise wavelength, comprises an in-phase arrangement. 

i.e. midway between points a and b in figure 18. If we now look back at figure 17, this 
is exactly opposite the positive vortex in braid A that was at the origin. Therefore the 
new vortex system in braid B is a repeat of the original braid vortex array in A, and 
we find that all the positive vortices are located as follows: 

maximum positive vorticity in braid B at Z = +nh. 

This is the same expression as used for the positive vortices for braid A earlier. The 
‘imprint’ of one braid onto the next braid, coupled with the saddle-point flow will thus 
generate an in-phase pattern of streamwise vortices in the successive braids. 

We show, in figure 19, two video images taken of the braid shear layer (in the manner 
of figure 15) half a cycle apart, clearly showing that mode B indeed yields an in-phase 
pattern of streamwise vortices. One vortex pair in braid A, for example, will be 
followed by the same vortex pair orientation on the next braid region B to form. 
Although there is some degree of spanwise (vertical) wandering of these pairs from one 
half-cycle to the next, a continuous running of the video on the screen monitor leaves 
no doubt regarding this symmetry. It should also be mentioned here, from studying 
carefully the video sequences, that subsequent to the growth of the new braid 
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streamwise vortices, which are a repeat of the previous set of braid vortices, the like- 
sign vortices in each braid system appear to amalgamate into a single set of braid 
streamwise vortices. There is thus a successive process of streamwise vortex 
amalgamation with each new braid to form, for mode B. The in-phase streamwise 
vortex pattern of mode B is presented diagrammatically in figure 20, and may be 
contrasted with the out-of-phase pattern of mode A. 

In analogy with this repeating of streamwise structure from one braid onto another 
for mode B instability in the separated wake, one can then imagine that in the case of 
a splitter plate unseparated wake, if one has a corrugation or waviness at the trailing 
edge of the plate with this form of cross-stream shape (i.e. as for braid B in figure 17 b), 
then one would expect to find an in-phase system of streamwise vortices. This is 
precisely what is found from the experimental/simulation study in Meiburg & 
Lasheras (1988), and in Lasheras & Meiburg (1990). In their mode 1 perturbation to 
the splitter-plate wake flow, with the above corrugations, they cause sine-wave 
disturbances to the flow in the cross-stream direction. In their figure 18, Meiburg & 
Lasheras write in their caption: ‘Notice also the equal rotation sense of the streamwise 
vortices in the two consecutive braids’. The actual view shown in their figure looks 
remarkably like our video image in figure 19 for mode B. Their mechanism for the 
generation of streamwise vortices in their mode 1, involving the presence of the saddle 
point in the braid regions, is wholly consistent with our description given in this 
section. 

4.4. Mode A : ‘Elliptic instability’ of the primary vortex cores 
The experiments in this paper provide clear evidence that mode-A instability scales on 
the primary vortex cores, and we shall present in this section further evidence, from 
theoretical considerations, that this mode is indeed a manifestation of an ‘elliptic 
instability’ of the vortex cores. 

One may suggest that this mode-A instability has some similarities, in terms of the 
lengthscale and symmetry, with the translative instability in a mixing layer vortex array 
analysed by Pierrehumbert & Widnall (1982). They consider a shear layer, which has 
assumed an equilibrated state comprising an array of Stuart vortices (Stuart 1967), and 
for which they find streamwise structures arising from a secondary three-dimensional 
instability of this primary finite-amplitude flow. Their ‘translative ’ mode of instability 
induces a spanwise waviness of the vortex cores, which is in-phase from one primary 
vortex to the next. The equivalent symmetry for the wake corresponds with our out- 
of-phase streamwise vortex pattern for mode A, shown in figure 20. The most unstable 
spanwise wavelength A, from Pierrehumbert & Widnall (for vortices typical of a shear 
layer) is given by A,/A, = 0.62, where A, is the primary wavelength. This value is close 
to the experimental measurements of Bernal & Roshko (1 986) and Huang & Ho (1990) 
for a shear layer, who find broadly AJA, = 2/3, but is also surprisingly close to the 
range of values AJA, = 0.6-0.8 found in the wake (noting that A, is close to 5D). 

These studies suggest that the lengthscale for mixing layer instability comes from the 
instability of the primary vortex core, rather than the braid, even though the braid 
region is where much of the streamwise vortex stretching takes place. This viewpoint 
has the support of several investigators of the mixing layer, including experimentalists 
Nygaard & Glezer (1990), and Huang & Ho (1990), as well as analytical investigators, 
such as Corcos & Lin (1984), Pierrehumbert & Widnall (1982), and Pierrehumbert 
(1986). However it is believed by Lasheras & Choi (1988) and Bell & Mehta (1989) that 
the origin of the streamwise vortices comes from the braid. It has subsequently been 
pointed out by Rogers & Moser (1992) that the instability naturally involves both the 
core and the braid together. They also show evidence, beyond the stability analysis of 
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FIGURE 21. Elliptic flow streamlines. We note that the horizontal major diameters of the elliptic 
streamlines are oriented at + 45" with respect to the principal stretching axes. In this case, the uniform 
rotation is anticlockwise, and the principal stretching axes of the uniform strain rate at -45" and 
+ 135". 

Pierrehumbert & Widnall, which shows that the lengthscale itself comes from the 
primary core instability, as described below. This is distinctly relevant to the mode-A 
wake instability. 

Rogers & Moser have discussed the more recent work by Pierrehumbert (1986), 
Bayly (1986), Landman & Saffman (1987) and Waleffe (1990), all of whom have 
studied the three-dimensional stability of elliptic flow. Rogers & Moser then evaluate 
values of strain rate and vorticity at the centre of a Stuart vortex (in the periodic array 
of vortices), and input these values into the elliptic instability analysis for the single 
vortex by Waleffe, predicting A J A ,  = 0.61. In other words, the elliptic-instability 
analysis for a single vortex in an array gives a most unstable spanwise wavelength 
essentially the same as that from the translative instability for the complete array. One 
may reasonably conclude from this, and from the results in Pierrehumbert (1986), that 
the elliptic instability of the primary vortices triggers the spanwise lengthscale for the 
ubiquitous streamwise vortices seen in the braids, in the absence of extrinsic effects 
from experimental facilities. From the above analysis for the mixing layer, one may 
suggest similarly that the spanwise wavelength for mode A in the wake corresponds to 
an elliptic instability of the primary vortex cores. 

An elliptic instability represents the exponential growth of inertial waves in a flow 
with uniform vorticity and uniform strain, which occurs in the case when the 
perturbation vorticity remains aligned with the principal stretching axis (a result made 
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FIGURE 22. Vorticity and strain fields from two-dimensional direct numerical simulation of flow 
around a circular cylinder at Re = 200. (a) Vorticity contours at w D / U  = +0.4, 1.2, f2.0, 

2.8 . . . . Numbers indicate local extrema. (b)  Directions of principal stretching axis. Numbers show 
typical values of the strain rate. (These data are kindly provided by Helene Persillon, and have been 
manipulated and plotted by Thomas Leweke, both at Cornell.) 

clear by Waleffe 1990). A flow with elliptic streamlines is generated when there is 
uniform rotation y (which is half the vorticity = w/2) ,  and uniform strain rate c, and 
where the velocity components are 

(3) 1 u = - y v  u = - € y  u = - ( (y+€)y  
I ? =  +yx v = -€X 1' = (y--F)x 
Uniform rotation + Uniform strain * Elliptic flow 

A useful sketch of this flow is given in figure 21. The rotation is in the anticlockwise 
direction, and the principal stretching axis is in the -45" (and + 135") direction. The 
streamfunction given by 

defines ellipses whose major axis is horizontal, and at t 4 5 "  with respect to the 
stretching axis (rather than aligned in the stretching direction), as seen in figure 21. The 
aspect ratio (or eccentricity) of these ellipses is given by a = [(y + E)/ (Y - c)]"~, and the 
ratio of strain to vorticity is defined by p = ( t . /y )  = ( ~ F / o ) .  Elliptic flow ensues if 
0 < /I < 1. The value /3 = 0 refers to circular rotating flow, while /3 = 1 refers to planar 
Couette flow. 

We now observe the two-dimensional base flow of the cylinder wake from direct 
numerical simulation (data kindly made available by Helene Persillon, and plotted by 
Thomas Leweke, both at Cornell). It is distinctly relevant that the roughly elliptical 
region of high vorticity 11 in figure 22(a) is associated with a principal stretching axis, 

y =  - L  (y"+x")-Le0,2-X2) ZY 



378 C. H.  K. Williamson 

shown in (b), which is aligned at 45" to the major axis of the ellipse. A similar situation 
is found for regions I and 111. A flow field such as in I1 satisfies the conditions of the 
'elliptic' instability, and may be compared with the sketch of elliptic flow in figure 21. 
(Of course, one is concerned in the real flow with a finite vortical region, not 
unbounded as in the present theories, and with only a roughly uniform-vorticity 
region.) In the present case, streamlines are not a good indicator of ellipticity, due to 
the unsteady two-dimensional flow field, although this point is further addressed 
below. However, in the case of vortex 11, we find 

and the lengthscale (minor diameter) of the vortex region is of order 1D. The values 
of strain and vorticity yield a value of /l z 0.6, which indeed signifies an elliptical flow. 

It is important to introduce further the elliptic flow instability in the present context, 
as follows. In the case of a circular (inviscid) rotating flow, and if we rotate with the 
base flow, i.e. take a reference frame rotating with angular velocity = y, then the base 
flow is reduced to rest, and the small velocity perturbations u on this flow are governed 
by 

wD/U z 3, cD/U % 0.9, a z 2 (4) 

duldt = - 252 x u - (1 / p )  Vp, ( 5 )  
w*u = 0. (6) 

where p represents what is known as 'excess' pressure. The first term on the right-hand 
side of ( 5 )  is the Coriolis force, and is the term which gives rise to waves known as 
inertial waves, in this rotating fluid. Our base flow, in the present example, has circular 
streamlines in the (x, y)-plane, and thus has a rotation around the z-axis : Q = (0, 0, y). 
We can obtain a physical understanding of the problem of inertial waves by 
considering the following example. If we consider, for the moment, a particle moving 
as a result of a disturbance in the (x, y)-plane only, with a velocity q = (u, v ,  0) (and not 
in this case representing a genuine fluid motion) then there will be a Coriolis force in 
the (x, y)-plane on this particle = - 252 x u = 2qy, acting in a direction perpendicular 
to velocity q, regardless of its direction in this plane. Thus the particle moves in a circle, 
with angular frequency w* = 27. (The above illustration is included in Tritton 1988.) 
What is also particularly interesting is that this particle will counter-rotate relative to 
the base flow rotation. Similarly, it may be shown that a plane wave, whose 
wavenumber is along the z-axis (i.e. where all the particles in a given (x,y)-plane move 
in unison in circles), satisfies the disturbance equations for this rotating base flow, 
yielding the same frequency, w* = 27. More generally for a wave given by 

where the wavenumber vector is at some angle, 8, to the z-axis, then the angular 
frequency of these waves, w * ,  which is governed by the disturbance equations (5 ) ,  (6), 
is given as 

Physically, in each plane normal to the wave vector, the particles again move around 
in circles, counter-rotating relative to the base flow. Inertial waves exist only with 
frequencies from zero up to 2y. If we now consider the inertial frame of reference, the 
wave vector k will move with the circular rotating flow, with a constant angle 8 to the 
z-axis. The counter-rotation of the particles in each plane normal to the (rotating) wave 
vector is the direct result of the Coriolis force. 

In the presence of uniform strain, which then yields the elliptic flow, as considered 
by Pierrehumbert (1 986), Bayly (1 986), Landman & Saffman (1987), Waleffe (1 990), 
and also included briefly as one of a number of cases by Craik & Criminale (1986), a 
certain range of these inertial waves are not neutrally stable, as they all are in circular 

u(x, t )  = iiexp[i(k.x-w*t)], (7) 

(8) o* = 2ycos 8. 
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rotating flow. For small strain, there exists a small range of wavenumber vectors close 
to 0 = in  which are unstable. Physically, this corresponds to the case when w* = y. 
With this frequency relationship, for small strain, the inertial waves are destabilized via 
a subharmonic instability from the imposed ellipticity (further discussed by Huerre & 
Rossi 1996). Waleffe has made clear a physical interpretation that, when the clockwise 
rotation of the velocity vector of the waves is equal and opposite to the anticlockwise 
rotation of the wave vector itself around the z-axis (i.e. when w* = y), then one can 
choose initial conditions such that the average perturbation vorticity is, and remains, 
in the principal stretching direction of the strain field. An exponential growth of these 
waves then follows. One may note that, in the elliptic flow case, the wave vector 
precesses around the z-axis along an elliptic path which is normal to, but the same 
shape as, the base flow streamline ellipse. 

Waleffe has superposed the individual wave Fourier modes to construct localized 
solutions, which for small strain, consist of Bessel function expressions for the 
perturbation velocities and vorticities, and thereby it is found that the perturbations 
decay roughly with l/(radius)1/2 as one moves away from the z-axis. It is rather difficult 
to visualize the ensuing elliptic instability (in order to relate it to the present physical 
situation of the wake vortices) without plotting the streamlines of the flow resulting 
from the growth of the inertial waves. This has been done in figure 23 (plotted by 
Thomas Leweke at Cornell; see also Leweke & Williamson 1996a) for the analytical 
expressions based on weak strain from Waleffe. The structure of the perturbation 
results in a displacement of the centre of rotation (for the resultant flow in (c) = base 
flow + perturbation) in the direction of the principal stretching axis. The inner and 
outer vortex layers (inside or outside of the bold circle, defining an ‘invariant’ 
streamline) are displaced in opposite radial directions. The flow pattern is modulated 
in the spanwise direction with a wavelength that depends on the eccentricity (a )  of the 
elliptic flow. For small strain this modulation has a wavelength close to twice the 
diameter of the invariant streamline. For comparison with the present experiments, we 
also show in figure 23 (4, the deformations of initially concentric material surfaces, 
visualized in the plane of principal stretching. In the present problem, such waviness 
is clearly visible in the vortex cores of near-wake vortices, in the early stages of flow 
development when the cylinder is started from rest in a towing tank, an example of 
which is included in Leweke & Williamson (1996a). The elliptic instability theory shows 
that the spanwise waviness of the core of an elliptical vortex region will be in the 
direction of principal stretching, which from the numerical simulation in figure 22, will 
be in the upstream-downstream direction. If one looks at the cross-sectional picture of 
the near-wake vortex in figure 11 (a), this also appears to be the case. However, one 
should note that the flow visualization in this case principally shows the mode-A 
instability well into its nonlinear development. 

In inviscid flow, for a given shape of the elliptic streamlines (for a given eccentricity), 
all wavelengths have the same growth rate. However, one can deduce discrete 
wavelengths if one imposes the condition that the invariant streamline (which is 
actually a tube with elliptic cross-section) will fit into a given finite vortex, which was 
a condition used by Rogers & Moser for the mixing layer Stuart vortex, employing the 
results for weak strain from Waleffe (1990, pp. 79-80). If one does this for the near- 
wake vortex 11, one finds that the growth rate (a) and most-unstable spanwise 
wavelength ( A )  of the elliptic instability are given as 

r D / U  = (9/16)(~D/U)(l  - / ? 2 ) 1 i z  M 0.405, 

h M 2DM1, z 2D, 
(9) 

(10) 
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FIGURE 23. Effect of the elliptic instability on the streamlines of an elliptical flow, shown for the 
asymptotic limit of vanishing strain rate. (a) Base flow (solid rotation). (b) Perturbation due to the 
inertial waves (from Waleffe 1990). Its characteristic lengthscale (wavelength) in this plane is 2a. (c )  
The resultant total flow, indicating clearly the displacement of the centre of rotation out along the 
principal stretching axis. The bold line shows the streamline that remains unchanged under the 
perturbation (described as the ‘invariant streamline’ in the text), and the dashed line indicates the 
plane that is shown in (d). (d)  Schematic representation of the vortex deformation in the plane of 
maximum strain rate. The upper diagram shows the initial situation with concentric vortex layers. 
The lower diagram shows the vortex perturbed by the elliptic instability. The thick line shows the 
centre of rotation, which is periodically displaced along the stretching axes with wavelength A. 
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where DAWJLv = minor diameter of the elliptic vortex. We shall find that this growth rate 
is reasonably correct, based on further results below. This approach also yields a 
spanwise wavelength of the right order, as found for mode-A instability. However, our 
analysis is based on an inviscid flow, and in fact the choice of the largest discrete 
wavelength from Waleffe's results is arbitrary, in that there exist smaller discrete 
wavelengths, if we scale down other larger invariant streamline tubes into the finite 
elliptical vortex. Further to this, the value of p = 0.6 in our wake case is not close to 
the conditions for small strain (small p). Following the first version of this paper, the 
author has indulged in much discussion over elliptic instability in wakes with Thomas 
Leweke at Cornell, and this has directly led to two of the present figures (22 and 23), 
and indeed to a further letter (Leweke & Williamson 1996~).  It appears that the key to 
deducing a reasonable estimate for the spanwise wavelength and growth rate in the 
present problem is the inclusion of viscosity in the analysis, which has been mentioned 
by several authors, although i t  is the paper of Landman & Saffman (1987) which 
explicitly demonstrates the effects on the instability of including viscosity. 

Including viscosity in this problem has two essential effects. First, it yields a cut-off 
lengthscale below which the elliptic instability is not unstable. Secondly, and quite 
significantly, the effect of viscosity leads us to predict that the largest wavelength, in a 
given problem, is the most unstable. These points are discussed with reference to the 
problem at hand, as follows. 

Landman & Saffman (1987) show usefully, in their figure 1, the maximum inviscid 
growth rate o-I.vvIscID versus the strain parameter p, and demonstrate that although 
the cases ,4 = 0 (circular rotating flow) and p = 1 (planar Couette flow) are stable, there 
is a maximum instability for [I = 0.8. This is relevant to the near-wake vortices, where 
/3 x 0.6 typically, suggesting a rapid growth of instability in our case. When viscosity 
is included in the analysis, as in figure 2 of Landman & Saffman, in the form of Ekman 
number, E, versus p ( E  = 27~vk;/y, where v is viscosity, k,  the spanwise wavenumber of 
the instability), then it is immediately seen that for a given ,4, the growth rate increases 
as one decreases Ekman number, with a maximum growth rate for the inviscid case 
(horizontal axis in their figure 2). This trend is seen clearly from the following total 
growth rate expression (noting that 0 is the minimum angle of the wave vector, which 
actually precesses around an elliptic path) : 

 TOTAL = ~ I N V J W I D  +-  VISCOUS, 

rTOTAL = 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ k ~ [ 1  +$(a2- l)sinz8], 
or normalized with respect to wake quantities, 

( ~ T ~ ~ ~ ~ ~ D / U )  = (wJLv,, D/U)-4n2Re-2(h/D)-'cos-28[1 +$(a2- l)sinz8]. (13) 
The total growth rate increases, for a given value of viscosity (or Re) and given ellipse 
aspect ratio (a),  as the lengthscale of the instability increases. In a finite size vortex, the 
most unstable wave will be the largest that can be fitted into the vortex. Although this 
is not a surprising result, since one expects that the smallest waves will be the most 
damped by viscosity, it is nevertheless a significant point. 

The second principal effect of viscosity is the imposition of a viscous cut-off length 
for the perturbation, below which the elliptic flow is stable. One can think in terms of 
a critical Ekman number, E*, for marginal stability, for which cr(E*, p) = 0. The 
existence of a short-wavelength viscous cut-off means that the region of elliptical flow 
must be larger than a minimum size for the instability to manifest itself. The instability 
lengthscale L( = 2a in figure 23) in the (x, y)-plane perpendicular to the rotation axis, 

( 1  1 )  
(12) 

is given by 
L = 2x/[k,( 1 + a2)112 sin Om]. 
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We can deduce the critical length L* from the relation E* = E(L*), and using 
equations (4), (14) : 

L* = 47~~’~D[sin~O,(wD/U)Re(l +a2)E*]- l i z  z 0.5D. (15) 

The elliptical region I1 in figure 22 therefore has a size L M D > L*, which is large 
enough to support unstable disturbances. (The parameter 8, is the most unstable wave 
vector angle, which for /3 = 0.6 in Landman & Saffman, figure 3, gives 8, M 53”). With 
the non-dimensional parameters for the vortex in the near wake varying only slowly 
with Reynolds number, the critical length varies roughly as Re-’’’, in other words it 
decreases with Re. The fact that at Re = 200 the critical length is of the same order of 
magnitude as the sizes of the different elliptical regions in the two-dimensional wake 
is consistent with the fact that the critical Re for the three-dimensional transition is 
found in this range. 

It is important to consider the growth rate for the near-wake vortices, and its relation 
to the characteristic time of the periodic base flow. The vortices of figure 22 retain their 
elliptic shape for at least one shedding period, T = D/ US, where the Strouhal number 
S equals roughly 0.2. We can deduce that E z $E*, using the fact that the elliptical 
region is about twice the critical length L*, and that E - L-’. From figure 2 of 
Landman & Saffman, for our case /3 z 0.6, we find E* z 1, so that E M $, and the non- 
dimensional growth rate is thus 2v/w = 0.25. Normalizing with respect to wake 
parameters gives aD/U M 0.375, which is reasonably close to the earlier estimate given 
from Waleffe’s weak strain analysis, equation (9). Using the fact that S z 0.2, we find 
a T  z 2, which means that the instability will grow by a factor 10, while instability 
conditions are favourable. Considering the feedback mechanism found in this paper, 
whereby the waviness grows from one primary vortex to the next until vortex loops are 
formed, the elliptic instability discussed above is sufficient to trigger ultimately the 
appearance of the nonlinear mode-A instability. 

One of the significant results to come from the theoretical analysis of elliptic 
instability in the near wake is the prediction of spanwise wavelength. The spanwise 
wavelength is related to the magnitude k,  of the three-dimensional wave vector by 
h = 27c/(ko cos Om) ,  which when divided by L using equation (14), gives a value for the 
‘aspect ratio of the instability’, from which we find 

h = L(1 + a2)’/2 tan Om z 3D. (16) 

This final result appears to be in good agreement with the measured spanwise 
wavelengths for mode-A instability in figure 9(b). 

The above approximate accordance of predicted and measured instability wave- 
lengths could be interpreted to indicate that the mode-A wake instability is triggered 
by an elliptic instability within the primary vortex cores. However, presentation of 
these considerations has met with some useful and important suggestions from 
Maurice Rossi of Universite Paris VI, Jean-Marc Chomaz and Patrick Huerre of Ecole 
Polytechnique, and Stephan Le Dizes of Marseilles (all private communications, 1996). 
One question concerns the inclusion of viscosity in the discussion of elliptic instability 
here, and whether viscosity has any effect on the results. It was reasonably suggested 
by Chomaz that the growth rate is relatively independent of wavenumber (for low 
values of k,D,  the growth rate would have a ‘plateau’), and thereby would not favour 
the growth of the largest wave. It should thus be pointed out here, for clarity, that the 
relationship between a and k ,  has a parabolic form, and equation (12) yields, for 
Re = 200, 

( @ D / U )  = 0.465-0.00978 (k,D)*. (17) 



Three-dimensional wake transition 383 

The range of possible unstable wavenumbers that would be smaller than the cut-off 
value, yet larger than that corresponding to the finite vortex size limit is given by 
3.5 < ( k , D )  < 7.0, which is a range that falls on a reasonably steep part of the growth 
rate curve, clearly favouring smaller wavenumbers (larger wavelengths). Viscosity 
would seem to remain important in the selection of unstable wavelengths. (It should be 
mentioned that one expects that for very small k,D the growth rate will diminish, as 
it does for the Stuart vortex array (Pierrehumber & Widnall 1986; Brancher & 
Chomaz, private communication, 1996).) 

It was further kindly pointed out by Maurice Rossi that the order of magnitude 
argument which led to h w 3 0  in equation (16) was perhaps too precise in the light of 
the fact that one does not know precisely how the lengthscale of the perturbation, L, 
will relate to the diameter of the finite-size vortex. In the case of the Rankine-type 
uniform vortex, Kelvin (1880) shows that the first zero of a neutrally stable Bessel 
function disturbance has a diameter D I N ,  (defining the invariant surface) which is 0.6 
of the vortex diameter, for his first mode of vortex inertial waves. It is nevertheless clear 
that the major problem for the present case is that one does not know the precise 
relationship between D I N ,  and the cross-sectional dimensions of a distributed vortex. 
However, our very recent experimental results from elliptic instability in vortex pairs 
(Leweke & Williamson 19963) clearly yields such a relationship, from which it appears 
one may reasonably predict instability lengthscales in the present wake problem. 

We shall first use a more precise estimate for the cross-sectional lengthscale of the 
disturbance (DINV) ,  rather than the order of magnitude value, taken from Landman & 
Saffman, in equation (14). The wave vector of the disturbance is given by 

k = k ,  [sin 8, a sin 8, cos 81. (18) 

Using the result from Waleffe (1990, p. 80) for the first zero of the Bessel function 
disturbance, we have an estimate for the dimensions of the invariant streamline ( D I N V )  
in the minor axis ( Y )  direction: 

(k,,a sin 0) D,, = 5.47, (19) 

(20) 

using previous values for the variables (a, 0). In the study of elliptic instability of an 
interacting vortex pair of Leweke & Williamson (1996b), it has been found possible to 
measure directly the value of D,,,, as well as to undertake velocity field measurements, 
which yield accurately the diameter at which the circumferential velocity is a maximum 
(DMAx).  We find the ratio as 

It is found that the (Oseen-like) vortex velocity distribution within the vortex pair 
problem and in the near wake are similar (in both cases, the vorticity in the minor-axis 
direction is well represented by a Gaussian distribution), indicating that a similar 
relationship will hold for the near-wake vortex I1 (of figure 22). If one looks at the 
streamline pattern of figure 24(a), it is clearly not possible to infer much for the velocity 
distribution of near-wake vortices. If, on the other hand, one subtracts the velocity at 
the centre of vortex I1 from the whole flow field, in (h) ,  as carried out by Thomas 
Leweke (using the data of Helene Persillon), then the vortex becomes strikingly elliptic 
with an aspect ratio of close to 2, and with a minor-axis diameter (DAw4Ay) 

giving an aspect ratio of the disturbance given as 

( h / D I N V )  = (7~/2.735) a tan 0 = 3.05 

(DI'VV/DM*X) = 0.92. (21) 

( D M A X / D )  = 1.03. (22) 
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FIGURE 24. Streamlines for Reynolds number of 200. In (a) we show the streamlines which suggest 
very little information regarding the near-wake vortices. If, however, we subtract the velocity of the 
centre of vortex I1 from the whole flow field, the result in (b) shows a striking elliptic vortex from 
which we can make measurements. This plot is made by Thomas Leweke, from data kindly supplied 
from DNS by Helene Persillon and Marianna Braza. 

We are now in a position to make a more precise prediction of the spanwise wavelength 
of elliptic instability by combining equations (20), (21) and (22), as follows : 

(WD) = (WLV) ( D , N V / D M M A X )  ( D M A X I D )  = 2.9, (23) 

(AlD) = 3, (24) 

although in view of the obvious assumptions made, the best we can predict is that 

again giving a predicted wavelength in good agreement with those values measured for 
the mode-A instability. In this case, however, we have a firm footing upon which to 
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base the relation between instability lengthscale and the vortex dimensions. In 
summary, it would appear from both experimental and analytical work that the 
spanwise lengthscale of mode A is indeed caused by an elliptic instability of the primary 
vortex core in the strain field of neighbouring structures in the near wake. 

4.5. Mode B: Instability of the ‘braid’ shear layer 
The instability mode B is quite distinct from mode A, and is shown to be an instability 
of the braid shear layer region, as observed in 94.2. This region of the flow is 
hyperbolic, and from the upper braid of figure 22, has a maximum ratio of strain 
to rotation /3’ z 2. Before a discussion of theoretical prediction of the mode-B scale 
based on the braid instability, let us consider the relationship between spanwise 
wavelength ( A )  and the vorticity thickness (6,J of the separating shear layer, for the 
mode-B instability. Measurements of the shear layer vorticity thickness at x / D  = 1 .O, 
over a wide range of Re (Williamson, unpublished results, 1988) give 

8 J D  = 4.2/Re1lZ. (25) 

A, - 46,*. (26) 

For Re = 280, we find S J D  z 0.25, and for AJD z 1.0 as given from figure 9, 

Since the above estimate is based on mean velocity profiles for the separating shear 
layers, it is an overestimate of the layer thickness at any instant, because the shear layer 
is flapping back and forth transversely. Instantaneous (6,/D) may be estimated from 
the simulations of figure 12, again giving a value of around i. 

Based on a knowledge of other shear flow instabilities, a wavelength A, - 46, seems 
of the right order as an ‘expected’ most unstable wavelength. One would perhaps not 
expect, for example, A, to be less than 18, or greater than 106,. That the most unstable 
wavelength in the braid is of order A, - 46, is not actually predicted by any existing 
theoretical study, to the author’s knowledge. It may be recalled that the analysis of 
streamwise vorticity in a braid strain field by Corcos & Lin involves a predetermined 
or imposed spanwise wavelength on the braid vortices, which does not originally come 
from a stability analysis. An analysis which takes into account the originally spanwise 
vortex lines, perturbed in the manner found in the present experiments, and in the 
presence of a saddle-point flow, has been discussed with Peter Schmit (University of 
Washington, personal communication, 1995-1996). Since such analysis is rather 
unwieldy, the approach of Peter Schmit is to analyse the counterpart of the elliptic flow 
instability, namely the hyperbolic flow instability (see also Lagnado, Phan-Tien & Leal 
1984), in the presence of unbounded uniform strain and rotation, but where the strain 
dominates (/3 > 1). Such an analysis, which has also been suggested by Rogers & Moser 
(1992) and Robert Moser (University of Illinois, personal communication, 1996), 
should provide a useful comparison with the present experimental measurements of 
mode-B instability. 

As a final point, it is worth stating that Corcos & Lin (1984) show that the instability 
of a shear layer that is strained in the direction of the principal vortices (i.e. parallel 
with the vorticity vector) yields a most unstable wavelength close to that without the 
superposed strain. Without superposed strain, the observed spacing between like- 
signed vortices is of the order of h - 3S,0, as found by Brown & Roshko (1986), based 
on a number of different studies. A system of counter-rotating vortices (as found in a 
braid) might be expected to have a spacing of twice this value, if one assumes that each 
vortex has the same cross-sectional aspect ratio as for the same-sign vortex array, thus 

A, - 68d (27) 
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FIGURE 25. Wake fluctuation profiles and spectra in the transitional wake. (a) RMS velocity 
fluctuation profile measured in both the laminar regime (Re = 152) and also in the wake transition 
regime (Re = 183), and beyond the transition regime (Re = 520), at x / D  = 30. (b)  Spectra taken at  
points of maximum energy in the laminar regime (Re = 152) and in the transition regime (Re = 183). 

This is an approximate indication that the instability wavelength for mode B (A, - 48,) 
is of the same order as one might expect based on the shear layer thickness. 
Nevertheless, a stability analysis for a shear layer in a strain rate field remains needed. 
We need here to predict the most unstable three-dimensional wavelength for a two- 
dimensional shear layer in a superposed two-dimensional strain rate field. 

5. Wake measurements characterizing transition 
In this section, we shall discuss velocity and pressure measurements made at various 

Reynolds numbers in the laminar shedding regime and through the wake transition 
regime. The fluctuation velocity profiles in figure 25(a) for the laminar regime 
(Re = 152) strongly contrast with those measured in the transition regime (Re = 183). 
The two side lobes for Re = 152 correspond to the two vortex rows moving 
downstream past the probe, whereas in wake transition not only is there far more 
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FIGURE 26. Downstream decay of wake velocity fluctuations and integrated energy, through wake 
transition. (a) Downstream decay of normalized rms velocity fluctuations, showing the distinctly 
different rates of decay in the laminar region (Re = 152) versus the transition regime (Re = 183,248). 
The plateau region and slow decay are less pronounced outside transition (Re = 520). (b) Level of 
velocity fluctuations and integrated energy ( E )  across the wake at x / D  = 30, for various Re through 
wake transition. The large level of fluctuations is particularly evident within the wake transition 
regime (Re = 19C-250). 

turbulence intensity at 30 diameters downstream ( x / D  = 30), but there is only a single 
large peak in the centre of the profile. This characteristic profile remains beyond the 
transition regime, as indicated by the case for Re = 520. Corresponding with these 
profiles, the spectra taken at the maxima in the profiles are radically different, as seen 
in figure 25(b). At R e  = 152, the periodic spectra correspond to the translation of a 
laminar periodic vortex array past the probe, and the peaks are at the Karman vortex 
frequency and their harmonics only. For the turbulent case for Re = 183 we have a 
much broader spectrum, with low energy remaining at the Karman frequency. There 
is a surprisingly large amount of energy spread in a broad peak at the lowest 
frequencies, which far exceeds the energy for the laminar periodic wake. 

The development of fluctuation level as one travels downstream, in figure 26(a), 
shows that in the middle of the wake transition regime ( R e  z 240), there is even a slight 
increase in fluctuation level between x / D  = 20 and 30. This increase, or plateau, 
contrasts strongly with the exponential decay of fluctuations for the laminar wake at 
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FIGURE 27. Large low-frequency fluctuations and corresponding spectra, through the transition 
regime. (a)  Low-frequency intermittent velocity fluctuations in the transition regime explain the large 
fluctuation energy measured in the profile and downstream decay plots of figure 26. (b) Spectra at 
x / D  = 5 and 30 for a selection of Re show the dominance of energy at low frequencies through 
transition, although by Re = 520, the broad low-frequency peak has diminished. 

Re = 152. The slow decay of integrated energy across the wake profile (denoted E ) ,  
shown in figure 26(b), is most evident in the wake transition regime around 
Re = 19G250, and the effect diminishes as Re increases outside this regime. Thus the 
transition regime is characterized by a surprisingly large level of low-frequency 
irregular fluctuations and a slow decay of turbulent energy, as one travels downstream. 

The time traces of velocity fluctuation at x / D  = 30 are particularly striking: figure 
27 shows the relatively enormous low-frequency fluctuations at Re = 210 compared to 
the decayed laminar high-frequency fluctuations at Re = 152. Again, these large 
irregular fluctuations diminish in intensity as Re increases to 520, away from transition. 
Spectra at x / D  = 5 and 30 are also shown for various Re, in figure 27, indicating the 
decay of fluctuations at the Karman frequency when there is laminar shedding, 
although in the transition regime, the Karman peak is rapidly lost in the noise by 
x / D  = 30. The low-frequency component in the spectra at x / D  = 30 reaches a 
maximum in the wake transition regime, but it is not apparent at higher Re, as shown 
for Re = 520. 

The character of the above measurements through wake transition are largely 
influenced by the rapid loss of energy at the Karman frequency, and a growth of 
fluctuations at low irregular frequencies. These low-frequency irregularities were 
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FIGURE 28. Striking similarities in variation of (u:,,JU) and base suction (- C,,), through the wake 
transition regime. (a) Velocity fluctuations (uim8/U) measured at x / D  = 10, y / D  = 1.5, as a function 
of Re. (6) Base suction coefficient (- C,,) as a function of Re. Both of these wake parameters vary 
consistently with each other. One would expect the level of velocity fluctuations to be some measure 
of the near-wake Reynolds stresses, which would approximately be balanced by the level of base 
suction, in order that the forces acting on the mean recirculation region of the near wake are in 
equilibrium. 

detected originally by Roshko (1954) and by Bloor (1964), and they are explained in 
Williamson (1992) as being due to the generation of intermittent vortex dislocations. 
A further brief discussion of large-scale vortex dislocations in natural wake transition 
will be given in $7. 

The wake transition regime may be characterized also by mean wake parameters as 
one varies the Reynolds number. In figure 28, there appears to be a striking accordance 
between the shapes of the fluctuation level ( U ; , ~ J U )  and the base suction coefficient 
(the negative of the base pressure coefficient, or -CpB) ,  as Re is varied through 
transition. The level of (uims/U) at a point in the near wake is an indication of the level 
of stress in the near wake. As the stress (and in particular the shear stress) in the 
formation region increases, and the mean wake recirculation bubble becomes smaller, 
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FIGURE 29. Variation of the location (Lc, B,) of the characteristic point as a function of Re, exhibiting 
distinct changes for the different shedding modes in wake transition. 

this is balanced by an increase in the base suction (see discussion in Roshko 1993, and 
in Williamson 1996a). Thus the curves in figures 28 are very similar in shape: each 
shows a drop as laminar shedding becomes unstable to mode-A instability and to 
dislocations. To some extent, the coherence and spanwise correlation of the shedding 
is reduced by the three-dimensionality, and the (two-dimensional) stresses are reduced, 
at this point. There is a remarkable peak in the stress and base suction at Re = 260, 
which corresponds to a strongly periodic spanwise instability of mode B, and a 
particularly ordered primary shedding. The reduction of two-dimensional stress and 
base suction after Re = 260 ensues as the small-scale three-dimensionality becomes 
more disordered. 

Further extensive measurements of (u ims/U)  have been made at each Re, and plotted 
in the form of contours in the near wake (Williamson 1987 and 1995 as yet unpublished 
work). There is a point on each side of the wake where (u ims/U)  has reached a 
maximum. The location of this maximum is defined here as the ‘characteristic’ point, 
for a particular Re, with downstream distance to this point defined by L,, and 
transverse coordinate as k BJ2. Levels of characteristic ( U : , , / U ) ~ ~ ~ ,  and its 
correlation with several wake parameters are the subject of further work of the author. 
We can see that wake transition does influence the characteristic length (L,) and width 
(B,) in figure 29, causing an increase of both dimensions when mode-A instability 
appears. Essentially the near-wake formation region (or ‘bubble ’) expands as the two- 
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dimensional stresses decrease, due to inception of three-dimensionality. As mode B 
appears at around Re = 250, there is a sharp decrease in wake width, which possibly 
corresponds with a decrease in the presence of dislocations, though this is not yet 
explained precisely. 

6. A ‘resonance’ in the near wake for Re = 260 
At this point in the presentation of results for the wake transition regime, it must be 

very apparent that the Reynolds number of 260 does represent a critical condition. At 
this Re, the wake oscillations are particularly periodic, with sharp-peaked spectra, in 
just the same manner as found in the laminar region. Examples of spectra and time 
traces of the velocity (the case without dislocations in this figure) are given in figure 30, 
under conditions of parallel shedding, where it can be seen that their appearance is 
close to that for a laminar regime case. In summary, the case Re = 260 seems critical 
for the following reasons: 

the spanwise instability mode B is particularly periodic; 
the primary vortex shedding is particularly ordered, and appears visually similar to 

the laminar regime, with the exception of the fine-scale three-dimensionality ; 
the velocity fluctuations are particularly periodic, with sharp-peaked spectra; 
there is a maximum in the fluctuations (u ims/U) ;  
there is a maximum in base suction (- Cp,). 
All of these variations at Re = 260, particularly the maxima seen in ( u ; J U )  and 

base suction ( -  C,,), suggest that there is possibly some form of resonance at this 
Reynolds number. It is conceivable that this is a manifestation of a resonance between 
the shear layer oscillations (frequency f,,) and the wake oscillations (frequency f,), 
where the relevant frequencies are coincident : 

f S L  =fK‘ 

Arguments put forward by Bloor (1964) suggested that the separating shear layer 
instability frequency would scale as 

. fS , l fK  

However, it happens that data from almost all previous investigations are not close to 
this ‘law’, despite the fact that most of them have fitted their data to a 1/2-power law. 
By replotting all of the available frequency data for the shear layer (including data up 
to the highest investigated, Re = 100000), Prasad & Williamson (1996, 1997a) have 
computed a much closer collapse of the frequency data, using the following 
relationship : 

as shown in figure 3 1. There are reasons, discussed in Prasad & Williamson, why one 
should expect an exponent greater than 112. 

For frequency ratios (fsL/fK) just greater than unity, one would not expect a two- 
frequency interaction, because one would not be able to fit a shear layer instability of 
the relevant wavelength within the streamwise extent of the vortex formation region 
before the vorticity becomes part of the fully formed shed wake. In fact, the first 
manifestation of shear layer instability is detected by probes at around Re = 1200 and 
for a ratio ( fs,/fK) around 3. However, if the frequencies are coincident (or 
synchronized) then it is conceivable that the shedding instability in the near wake will 
be particularly strong. It is worth mentioning that this suggestion was made after the 
expression for frequencies (22) was computed. One can find that the Reynolds number 

fSL/fK = 0.0234Re0.674, (30) 
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FIGURE 30. Spectra and velocity fluctuations at Re = 260. These spectra demonstrate the effects due 
to the presence of dislocations in broadening the spectra, and in reducing the shedding frequency. The 
time trace without dislocations (a) is remarkably periodic, and very similar to such fluctuations found 
in the laminar regime, while the time trace in (b) indicates clearly the presence of dislocations. Hot 
wire at x j D  = 10, y j D  = 1.3. 

at whichf,,/f, = 1 .O is given as Re = 262, which is essentially just where one finds the 
maxima in stress and base suction, and the other critical conditions mentioned above. 
It appears conceivable that the resonant conditions found at Re = 260 are caused by 
an interaction between two coincident frequencies in the near wake: namely the 
separating shear layer frequency and the bluff-body wake frequency. 
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FIGURE 3 1. Coincidence between extrapolated shear layer frequency us,) and Karman frequency (f,) 
at Re = 260, where there is an apparent resonance. The best-fit to all previous shear layer frequency 
measurements is not given by a Re*’* power as generally assumed, but rather by an expression 
involving a Re“ ‘’ power (Prasad & Williamson 1996). In this figure. we have extrapolated this 
expression down to the point wheref;, =f,, yielding the value of Re = 262. This marks precisely the 
point where there are distinct maxima in stress level and base suction, evident in figure 28, and 
represents what we have termed a ‘resonance’ of the flow. [See Prasad & Williamson for references 
corresponding to the data symbols.] 

Despite the above possible scenario to explain the resonance, one may also suggest 
that Re = 260 represents the Reynolds number at which mode B becomes linearly 
unstable, as found from the recent analysis of Barkley & Henderson (1996), and where 
we may perhaps expect the most periodic form of the streamwise vortex structure to 
appear, and this point is discussed further in $9, 

7. Vortex dislocations : fundamental large-scale structure in wake 
transition 

The existence of large-scale vortex dislocations, or in other words ‘phase 
dislocations’ of the primary vortex shedding, as a fundamental aspect of wake 
transition, was discovered in Williamson (1992). Their existence in wake transition 
explains the low-frequency irregular fluctuations originally reported by Roshko (1 994) 
and later by Bloor (1964). In Williamson (1992), it was shown that forced ‘two-sided’ 
dislocations and naturally occurring dislocations in wake transition had distinct 
similarities, one of which was the large low-frequency fluctuations found further 
downstream, responsible for most of the energy in the velocity spectrum. Two-sided 
dislocations occur at a local spanwise location where the shedding falls out-of-phase 
with the shedding to each of the two sides, hence the terminology ‘two-sided’. This 
contrasts with ’ one-sided ’ dislocations which occur between spanwise cells of different 
frequency, and can be associated with the end conditions. The main point about two- 
sided structures in wake transition is that they occur independently of the ends, in an 
intermittent fashion. However, it has not been made clear before where these naturally 
occurring dislocations are triggered along the span, or what is their symmetry with 
respect to the wake centreplane, in the transition regime. 
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FIGURE 32. Evolution of a vortex dislocation at the site of a vortex loop of mode A: breakdown 
of spanwise periodicity for mode A instability. These are the two-sided dislocations that were forced 
to occur in the case of Williamson (1992), but it is clear that in the case of wake transition, they can 
form independently of the end conditions. 
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FIGURE 33. Transverse symmetry (across the wake centreplane) of a vortex dislocation. Placement of 
two hot wires, exactly opposite each other on two sides (i y )  of the wake centreplane, shows that 
although the high-frequency Karma, vortex fluctuations are out-of-phase, the low-frequency 
irregularities, indicative of dislocations, are in-phase. The conclusion is that the large-scale 
dislocations are symmetric with respect to the centreplane, which is perhaps not unexpected. 

From extensive visualizations of these two-sided dislocations, it has become clear 
that they are triggered at the sites of the vortex loops of mode-A instability, as 
indicated on the sequence of photographs of figure 32. One can interpret a vortex loop 
of this mode A as being a segment of the primary vortex whose shedding is delayed 
relative to the main part of the vortex. If such a loop grows, from one primary structure 
to the next, it can lead to the complete primary vortex locally shedding later than the 
rest of the primary vortex to each spanwise side, and we then have a phase or vortex 
dislocation. This is essentially what is shown in the visualization sequence in figure 32. 
There is a tendency for a single loop, within a spanwise row of vortex loops, to grow, 
inhibiting the formation of other dislocations to each side. This leads to a certain 
density of dislocations within the wake, which is comparable to the 'vortex defect' 
density found in mixing layers by Browand & Prost-Domasky (1990). 

One might question the symmetry of these large-scale structures with respect to the 
wake centreplane: are they antisymmetric or symmetric when viewing in the spanwise 
direction? Hot-wire probe measurements have answered this question, as follows. Two 
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probes were placed opposite each other on each side of the wake (+ y).  Near the body, 
at x / D  = 5, the Kirman-frequency velocity fluctuations are clearly in antiphase in 
figure 33, although the effect of the glitches, shown to represent phase dislocations in 
Williamson (1992), are in-phase across the wake. If one places the two probes 
downstream at x / D  = 40, then it is clear that the large-scale structures are in-phase, 
even though the remnants of the small-scale (Karman vortex) structures remain out- 
of-phase. One can conclude that the large-scale structures, or vortex dislocations, are 
of a symmetric form in wake transition. This appears to be consistent with theoretical 
statements in Yang, Mansy & Williams (1993), who state that the dislocations must be 
symmetric if the Karman street is antisymmetric. 

8. The ‘stable’ and ‘unstable’ flow states through wake transition 
As may be suggested from the frequency measurements of figure 1, the effect of these 

dislocations is to decrease the Strouhal number. With the transition to mode-A 
instability and, perhaps more relevant here, the inception of dislocations, the vortex 
formation region grows in size as shown by the characteristic dimensions of figure 29, 
the base suction decreases, and the turbulence intensity in the near wake (and hence the 
stresses) decreases. These variations are consistent with the reduction of spanwise 
coherence of the primary vortex shedding when dislocations appear; the three- 
dimensionality will decrease the two-dimensional stresses. The growth of the near- 
wake dimensions is consistent with a reduction in vortex formation frequency, both of 
which are expected to have, very roughly, an inverse relationship. 

It has proven possible, even for Re = 260 and above, to encourage or inhibit the 
presence of dislocations, by suitable manipulation of end conditions, as demonstrated 
in Prasad & Williamson (1997b) (over a range Re = 260-6000). The presence of 
dislocations tends to broaden the spectra, and to produce a lower peak intensity and 
a lower frequency, as shown by figure 30. The corresponding time trace of velocity 
fluctuations (b) indicates the presence of dislocations, in contrast to the periodic time 
trace (a) without the dislocations but at the same Re = 260. It is most significant that, 
where dislocations are imposed by end conditions in figure 34(a), the curve of Strouhal 
number is a simple continuation of the curve for the mode-A instability (also 
with dislocations). In fact, by imposing dislocations up to around Re = 400, the 
lower-frequency curve is further extended. If this lower curve represents (mode 
B + dislocations), then it suggests that the curve for mode A is more strictly the curve 
for (mode A + dislocations). This suggests a higher frequency could exist for purely 
mode A (in the absence of dislocations). The possibility of a higher-frequency curve 
(denoted mode C at that time) was discussed when the modes A and B were originally 
found in Williamson (1988 b). 

Of direct relevance to our discussion here, Zhang et al. (1995) proposed that the first 
discontinuity and hysteresis, associated with the onset of three-dimensionality in 
experiment, and representing a ‘hard ’ transition, can be replaced in numerical 
simulations by a ‘soft ’ transition. The three-dimensional flow state for this ‘soft ’ 
transition causes the Strouhal curve in figure 34(a) to diverge gradually downwards 
from the two-dimensional case (although this point is not altogether as clear because 
their data are surprisingly high compared to all the other simulations compiled in the 
review of Williamson 1996 a). However, Ron Henderson (personal communication, 
1995) finds that dislocations do indeed appear in his three-dimensional simulations, 
and he has found Strouhal numbers close to the lower experimental curve. This fact, 
and further experimental evidence discussed above, has shown that the lower 
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FIGURE 34. Stable and unstable states of the wake through the transition regime. (a) A new 
interpretation of the Strouhal curves; the upper curve corresponds to purely small-scale instabilities 
(e.g. A, B) ; the lower curve corresponds to these instabilities combined with intermittent vortex 
dislocations (e.g. A*, B*). The natural wake transition follows the sequence (2D --f A* + B), although 
more probably a further state occurs, such that we have: (2D --f A +A* -f B). (b)  The curves from the 
above data are drawn alone, for clarity, including the two-dimensional data from DNS of Barkley 
& Henderson 1996). 

experimental curve (indicating the presence of dislocations) is a steady solution for the 
flow, and the upper three-dimensional curve from Zhang et al. (before dislocations 
appear) can be interpreted as a transient case. 

In this section, the recent results of Leweke & Provansal(l995) must be mentioned, 
although in fact their problem comprises the flow normal to a ring cylinder (or torus). 
This represents, for large aspect ratio, the case of a cylinder with no physical ends, but 
can be thought of as a flow with periodic boundary conditions, just as in many of the 
DNS simulations. Leweke & Provansal find a distinct difference between the ring wake 
and the straight cylinder wake, in that they do not detect a second discontinuity 
separating mode A from mode B, and instead find a continuous curve as shown in 
figure 34(a). This they believe is the valid form for a wake without ends, and the second 
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discontinuity is an artifact of the straight-cylinder end effects. However, it now seems 
apparent that just the inverse of this statement is true. It happens that their curve in 
figure 34(a) is almost precisely the Strouhal curve that one finds for mode B, for a 
straight cylinder, when one induces vortex dislocations along the span (Prasad & 
Williamson 1997b), and suggests that for the torus, in this regime, the requirement of 
periodic end conditions cannot easily be met without dislocations being generated. 
This suggestion is supported by their measurements of a very low circumferential wake 
correlation close to Re = 260, which would also suggest dislocations. It is also found 
that DNS computations, where dislocations are present, give Strouhal numbers along 
the mode-A curve (R. Henderson, personal communication; see figure 11 (a) in 
Williamson 1996a), whereas DNS computations without dislocations at Re = 300 
place the Strouhal numbers very close to the experimental (upper) mode-B curve, in 
line with the straight-cylinder experiments. This appears to suggest again that the 
second discontinuity is an intrinsic phenomenon representing the wake of an infinitely 
long body, and not simply some artifact of the end conditions. 

The investigations of the transition regime above lead us now to a new clarification 
of the possible flow states or modes through transition, as represented by the S-Re plot 
in figure 34(b). In this plot, the dashed curves are for flow states that are either 
unstable, or are transient, in the sense that such states can occur early in a DNS or 
experimental run, but will later evolve to a different more-stable flow state. When the 
flow exceeds a critical Re, the flow mode can follow a transition corresponding to 
mode-A instability small-scale structure, without dislocations. At some point in time 
after the start of the flow, when dislocations develop at some of the vortex loop ‘sites’ 
of mode A, then the flow will revert to a state A*, comprising a mix of both mode A 
structures and dislocations. At around Re = 230 up to 250, there are intermittent 
periods when there are predominantly small-scale instability structures across the span 
(a mix of A and B structures but without dislocations), yielding the upper frequency 
curve (B), and periods when the flow is principally mode A structures, but with 
dislocations, yielding the lower frequency curve (A*). Beyond Re = 250, the flow 
remains in the flow state of mode B, without dislocations, unless such dislocations are 
artificially introduced (Prasad & Williamson 1997b), in which case one follows the 
curve marked B*. This is a continuous extension of A*. 

Thus there are two distinct Strouhal curves in figure 34(b): the upper one 
corresponds to the small-scale instabilities alone, and the lower one to a combination 
of the small-scale instabilities plus dislocations present. The natural transitioning wake 
will, however, pass from one flow state to another in the sequence 

(2D --f A* + B). 

There does remain the likely possibility that there exists a very small range of Re for 
which the flow is unstable to small scales of mode A, but whose amplitude is too weak 
to trigger intermittent vortex dislocations. This would be consistent with the result of 
Barkley & Henderson (1996), which predicts mode-A instability at Re = 189, which is 
earlier than the value of Re = 194 where experiment shows a distinct drop in frequency, 
indicative of dislocations (Miller & Williamson 1994). The above scenario yields the 
sequence 

(2D + A + A* + B). 

In the above sequence, natural wake transition comprises two discontinuous changes 
as Re is increased, with a hysteresis at the first discontinuity. Although there are two 
conceivable flow states at any particular Re through wake transition, it is clear that 
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some states are ‘unstable’ or transient, while others are ‘stable’. This conclusion is 
consistent with the final statement in Williamson (1988b), where an upper curve for 
mode A was indicated, although the lower curve was proposed as a more stable route 
in the transition to three-dimensionality. 

9. Discussion 
The present work has indicated how streamwise vortex stretching, in the manner 

found in mixing layers, is an essential ingredient for the generation of streamwise 
vorticity in both modes A and B. An explanation for the symmetries of the two modes 
is based on two different mechanisms of instability : one is based on the core instability 
while the other involves instability of the braid shear layers. However, there exists an 
alternative view. Koenig, Noack & Eckelmann (B. N. Noack, personal communi- 
cation, 1995) believe that the streamwise structures are a manifestation of ‘Gortler ’ 
vortices, and have suggested from simulation that supercritical Taylor numbers exist 
near the braid regions in the wake, with some analogy to Taylor-Couette flows, and 
they suggest that this fact supports centrifugal instability as the origin for streamwise 
vortices. Such an idea was also proposed for the origin of streamwise vortices in the 
mixing layer, prior to the three pioneering papers of Corcos & Lin (see 1984), and the 
experimental work of Bernal & Roshko (1986), who focused on the stretching 
mechanism near the saddle points in the braid shear layers. The results in the present 
paper neither discount nor support the possibility for a centrifugal instability, at the 
present time. 

The approach to the bluff-body wake problem from direct numerical simulation has 
received a great deal of attention recently. Not only are the mean parameters, such as 
Strouhal number, drag force, base pressure, stresses in the wake, well predicted, but the 
simulations provide a tool to understand the physics of the flow. The agreement among 
the computations and with the experiments is now remarkably good for the Strouhal 
number and base suction coefficient (see Williamson 1996 a). Three-dimensional DNS 
of wake transition have confirmed, recently for the first time, the existence of both 
modes A and B in computations (Thompson et al. 1994, 1996; Zhang et al. 1995; 
B. N. Noack 1995, personal communications). The distinctly larger and smaller 
wavelengths of modes A and B (respectively) can clearly be observed in the striking 
surface-contour plots from Thompson et al. (19941, also reproduced in the review of 
Williamson (1996~).  Mittal & Balachandar (1995~2, c) have also found results from 
their DNS computations consistent with the present work, although the short cylinder 
span in their case precludes confirmation of patterns such as modes A and B. They 
make the point that previously formed streamwise vorticity affects the formation of 
new streamwise structures. They conclude that streamwise vortices are due both to the 
deformation of primary vortices during shedding and also the subsequent stretching in 
the braids. They show that the vorticity that is not taken upstream in the form of loops 
forms horseshoe-type structures on the primary vortex. All three of these conclusions 
are in direct accordance with the present work, and with the preliminary or overview 
studies of Williamson (1988b, 1992). 

Mittal & Balachandar (1996) have very recently proposed a related mechanism 
which they call ‘ autogeneration’ of streamwise vortices, from a numerical simulation 
of the cylinder wake at Re = 300. A new set of streamwise vortices is autogenerated as 
a result of the presence of an older set of vortices in the near wake. Mittal & 
Balachandar go on to suggest that it is the spanwise distortion of the primary spanwise 
vortices (by the streamwise vortices), in particular causing an entrainment of vorticity 
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from the ‘neck’ region (a region ‘which connects the rolled-up spanwise vortex with 
the shear layer’), that plays a ‘crucial’ role in the autogeneration process, since this 
results in a distortion of the stretching field, which in turn has a direct influence on the 
growth rate and location of the new vortices. The essential difference between this 
mechanism and the present mode-B generation of new streamwise vortices is that in the 
present case there is a direct and clear perturbation from the old braid vortices onto 
the new ones, whereas the autogeneration system is indirect: the old streamwise 
vortices generate an undulation in the primary vortices, which in turn somehow distort 
the stretching of the new braid. Although this is different and clearly a much more 
complex scenario than is experimentally observed for mode B, it does seem that the 
general concept that an old set of streamwise vortices will influence a new generation 
of vortices is consistent with the present work, indeed for both present modes. Mittal 
& Balachandar also state that, because the bluff-body flow has a ‘strong spatial 
development’, the instability cannot be explained on the basis of a core or braid 
instability alone. 

A further new mode-C three-dimensional instability has been proposed by Zhang et 
al. (1995), for Re = 17G270, based on the approximate stability analysis of Noack & 
Eckelmann (1994). In their analysis, Noack & Eckelmann find a spanwise wavelength of 
instability of h,/D = 1.8, which is also observed in the experiments and simulations of 
Zhang et al. However, this mode has surprisingly not been detected in any of the other 
experimental, numerical or analytical studies to date (including the present). It is of 
direct relevance to the possible existence of such a mode that, in the full Floquet 
stability analysis of Barkley & Henderson (1996), using 10000 modes in their analysis, 
they state that they find no unstable wavenumbers outside the neutral stability curve 
of figure 9(b), and they find h,/D = 1.8 to be a stable wavelength at these Re. Further 
results to support a mode C has been proposed by Zhang et al. in the form of DNS and 
experiments. From these studies, it appears that this mode C is the result of forcing on 
the nominally two-dimensional flow, in this case using an interference wire placed close 
to and parallel to the cylinder axis. Presumably, if one interferes with the two- 
dimensional flow field in other ways, one can induce still further three-dimensional 
instability wavelengths and modes. From the above deductions, it appears, at this 
point, that the natural wake comprises only the two distinct instabilities yielding modes 
A and B. 

It should be mentioned that particle-image-velocimetry (PIV) techniques are now 
being applied to the wake problem in an effort to find vorticity and circulations in the 
streamwise vortices. Wu et al. (1994) have deduced the velocity and vorticity field of 
such vortices using PIV, and they compute the streamwise peak vorticity at Re = 525 
to be (w, D/ U )  = 7, which is larger than the peak spanwise vorticity of the Karman 
vortices, (w,D/U) = 4.5. On the other hand, the streamwise vortex circulations 
(&./UD = 0.4) are much smaller than the primary vortex circulations 
( T J U D  = 2.5-3.5). Similar results have been found over a large range of Re at least 
up to 10000, as shown by the work of Lin et al. (1995b), and are consistent with data 
at Re = 5000 (Chyu & Rockwell 1996), although data are not at present at hand for 
the wake transition regime (the latter case is receiving attention currently from Helmut 
Eckelmann and co-workers). As one may expect, although streamwise vortex 
circulations are less than primary vortex circulations, the streamwise vorticity is axially 
stretched in the braid regions between the primary structures, causing strong vorticity 
amplification. 

Finally, it must be stated that very recent results from Barkley & Henderson (1996) 
have demonstrated significant new results which are of direct relevance to the present 
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study. Their work has now shown that both modes A and B are secondary instabilities 
on the primary two-dimensional wake structure. (It seems particularly interesting to 
mention here the discovery of the second branch of instability in the plot of spanwise 
wavelength versus Re of figure 9, which shows mode B to become unstable at R e  = 259. 
Not only are the wavelengths close to those previously measured in experiments 
( A  - lD) ,  but this critical Reynolds number is very close to the so-called ‘resonance’ 
of measured wake parameters at Re = 260 shown in the present $6. The fact that 
smaller wavelengths corresponding to mode B are found in experiment at R e  < 260 
seems related to the fact that the real flow, in the absence of mode B, is not two- 
dimensional, as used for the analysis in Barkley & Henderson, but is indeed already 
unstable to mode A with the complication of the presence of intermittent dislocations. 
It seems quite possible that the peak in measured parameters of figure 28, and the 
apparent resonance observed, is due to the start of this region of mode-B instability. 
The whole span becomes unstable to mode B, leading to the particularly ordered 
streamwise vortex structure, rather than simply spanwise patches of mode B for 
Re < 260, modified by mode A and dislocations. 

It also appears highly consistent with the present work, that the analysis of Barkley 
& Henderson (1 996, and personal communications) also demonstrates quite distinct 
regions in the cross-sectional flow field where the two instability modes are theoretically 
concentrated. Their figure 11 appears to show that mode A is concentrated around the 
primary vortex cores, while mode B is concentrated in the braid regions. This result is 
clearly consistent with the present study. 

10. Conclusions 
The wake transition regime ( R e  = 190-260) is characterized by two distinct three- 

dimensional modes of instability, as shown by Williamson (1988 h). Mode-A instability 
has a spanwise wavelength of 3-4 diameters, whereas mode-B instability has a 
wavelength of close to 1 diameter. It is proven in the present work that both modes 
involve the generation of streamwise vortex pairs in the wake, which reside and are 
stretched in the streamwise direction in the braid regions, between primary Karma, 
vortex structures. Such stretching of streamwise vorticity is a well-known mechanism 
in free shear layers. 

The marked disparity in spanwise wavelengths, and visual appearance, between 
modes A and B corresponds to the fact that the modes are due to two distinct 
instabilities. The two instabilities scale on the two principal physical features of the 
wake flow. The (long-wavelength) mode A scales on the larger physical feature in the 
wake flow, namely the primary vortex cores, and is shown to be due to an elliptic 
instability in these vortices. The nonlinear growth of vortex loops is due to the 
deformation or tearing of the primary vortices periodically along the span. The loop 
formation is self-sustaining at the same spanwise position, causing an out-of-phase 
symmetry for the streamwise vortex pattern of mode A. It appears that the realization 
that mode-A wake instability is indeed an elliptic flow instability of the near-wake 
vortex cores may represent the first clear manifestation of such an instability in a real 
open flow, although it does seem highly probable that it is generic to all shear flows, 
under conditions where the coherent vortex size exceeds the viscous cut-off scale. 

The (short-wavelength) mode B, on the other hand, scales on the smaller physical 
length scale, namely the braid shear layer. If mode A represents an instability akin to 
that found for free shear layers (Bernal & Roshko 1986), with comparable lengthscales, 
then mode B is altogether a different instability, which is highly influenced by the 



402 C. H.  K. Williamson 

existence of the reverse flow region in the bluff-body wake. An essential feature for 
mode B is the fact that a forming braid shear layer lies in close proximity to a 
previously formed braid, which comprises an array of rolled-up streamwise vortices, 
and which is brought upstream by the reverse flow. The disturbances thus imposed on 
the forming braid sets the preferred locations of the new braid vortices, giving a specific 
symmetry quite distinct from mode A; mode B has an in-phase symmetry for the 
streamwise vortex pattern. This symmetry, and the mechanism of instability involving 
the braid saddle points, is analogous with Meiburg & Lasheras’ mode 1 perturbed 
unseparated wake from a splitter plate with cross-stream corrugations. It should also 
be mentioned here that, subsequent to the growth of the new braid streamwise vortices, 
which are a repeat of the previous set of braid vortices, the like-sign vortices in each 
braid system appear to amalgamate into a single set of braid streamwise vortices. 

It is known that the incipience of wake transition is triggered early by contamination 
in the form of vortex dislocations coming from the ends of the body (Miller & 
Williamson 1994). Over the last forty years a range of critical Reynolds number of 
Re = 140-190 has been reported. However, by minimizing any end contamination, one 
finds Reerit = 194, which is remarkably close to the results from the recent Floquet 
stability analysis of Barkley & Henderson (1996), which finds Recrit = 189. In the 
present paper, we find that the presence of interfering vortex dislocations (not caused 
by end effects) causes the large scatter in previous measurements of spanwise 
wavelength for the vortex loops of mode-A instability. It is only by careful and 
accurate measurements without the presence of dislocations, that one finds a clear 
trend of decreasing wavelength with Reynolds number, which is quite distinct from the 
assumptions of constant wavelength in previous studies. The present data yield an 
excellent agreement with the curve of maximum growth rate from the stability analysis 
of Barkley & Henderson. 

The wake transition regime can also be characterized by velocity and pressure 
measurements, and the inception of the different modes of instability, along with the 
presence of dislocations yield discontinuities in the S-Re relationship, the first of which 
is hysteretic while the second involves a gradual transfer of energy from one mode of 
shedding to another. It is shown here that the presence of the dislocations has an 
important impact on the flow measurements: it causes a discontinuous reduction in 
Strouhal frequency and it induces large levels of turbulent fluctuations, which decay 
only slowly downstream. One might question from where these two-sided dislocations 
originate. We show here that they are triggered at the sites of vortex loops, and are not 
a manifestation of end effects or of experimental artifact. In other words, the 
periodicity of the mode-A instability itself seems to naturally break down into a much 
more irregular state, and thus should be considered in further modelling or simulation 
of this flow. 

Further measurements indicate a remarkable similarity between the variations of 
base suction and the level of fluctuations (or Reynolds stress) through the wake 
transition, which may be understood if one considers the balance of forces on the mean 
recirculation region in the near wake. It is consistent that, when dislocations and mode- 
A instability appear, one finds a reduction of fluctuation level, a reduction of base 
suction, a growth in the size of wake formation region, and thereby a reduction in 
Strouhal frequency. 

At the end of the transition regime, Re = 260, there appears to be a resonance 
condition, corresponding with a local maximum in base suction and Reynolds stresses, 
which is matched by a particularly ordered and periodic shedding. It does seem 
aonceivable, based on extensive frequency measurements, that this resonance is caused 
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by an interaction between two coincident frequencies in the near wake, namely the 
separating shear layer frequency and the bluff-body wake frequency. It is also 
significant that Re = 260 corresponds closely to the inception of a secondary instability 
region for mode B, as shown very recently by Barkley & Henderson. 

The present work leads us to a new clarification of the possible flow states through 
transition. Right through this regime there exist two distinct and continuous Strounal 
frequency curves - the upper one corresponds with purely small-scale instabilities (e.g. 
denoted as mode A), while the lower curve corresponds with a combination of small- 
scale plus dislocation structures (e.g. mode A*). However, some of the flow states are 
transient or unstable, and the natural transitioning wake follows the scenario 

(2D + A* + B). 

However, we must admit the possibility of a very small stable regime of mode A, before 
dislocations appear, causing the discontinuous jump A + A* : 

(2D + A +  A* + B). 

Although this latter sequence seems probable, evidence is not yet at hand to prove this 
scenario of flow states. 

The author would like to enthusiastically thank Anil Prasad for wholehearted help 
with this paper, and Thomas Leweke for exceedingly enjoyable communications 
regarding elliptic instability in this and other flows we study. Helene Persillon (Cornell) 
and Marianna Braza, as well as Karim Shariff, are to be thanked for making available 
2-D DNS wake data. The author would also like to thank Gregory Miller and Chantal 
Champagne PhD for further assistance, and Patrick Huerre, Jean-Marc Chomaz, 
Maurice Rossi and Stephan Le Dizes for interesting discussions. Thanks are also due 
to the enthusiastic help of undergraduates Phil Peters and David Williams, who set up 
the LIF video arrangement for two of the figures. The support from the Ocean 
Engineering Division of the ONR, monitored by Tom Swean, is gratefully 
acknowledged. (ONR Contracts No. NOOO14-94-1-1197 and NOOO14-95-1-0332). It is 
thanks to the opportunities provided by Anatol Roshko of Caltech and to Eugene Silva 
of ONR that this particular piece of work was begun at Caltech back in 1985. 

Note added in proof: Very recent work of Brede, Eckelmann & Rockwell (1 996) has 
addressed the wake transition secondary vortex structure from PIV (particle-image- 
velocimetry) measurements. Their excellent use of this technique (developed in this case 
by Don Rockwell at Lehigh University) is directly relevant to the present results. They 
find topologies as follows. For the A-mode they describe the structure as ‘vortex 
patches’ or ‘tongues’, which are essentially the vortex loops found here and in 
Williamson (1988), whereas for the B-mode they interpret the flow as having 
‘continuous vortex tubes’. This is also consistent with the present work, if one 
interprets the succeeding sets of streamwise vortices as being somehow joined (a point 
which is not obvious). As regards instabilities, they propose certain speculations, as 
follows. For the A-mode, it is proposed that it is ‘the result of an instability of the braid 
region between the primary vortices’, which they suggest is a manifestation of a 
centrifugal instability. For the B-mode, they suggest that it has its origin in the three- 
dimensional instability of the separated shear layer right behind the body, without 
primary vortex interactions being important. Although the wake structure observations 
are similar to the present and previous studies, the proposition that A and B modes 
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have respectively a braid-centrifugal instability, and a shear layer instability, are clearly 
in marked contrast to the present conclusions. 
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